Group 1: Semi-arid and arid regions

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anil Gupta</td>
<td>Alberta Environment</td>
</tr>
<tr>
<td>James McPhee</td>
<td>Univ. of Chile</td>
</tr>
<tr>
<td>Werner Herrera</td>
<td>Alberta Environment</td>
</tr>
<tr>
<td>Chiadih Chang</td>
<td>Alberta Environment</td>
</tr>
<tr>
<td>Terry Chamulak</td>
<td>Alberta Environment</td>
</tr>
<tr>
<td>K. Kumaraswamy</td>
<td>Bharathidasan Univ.</td>
</tr>
<tr>
<td>Zhentao Cong</td>
<td>Tsinghua Univ.</td>
</tr>
<tr>
<td>Pablo Dornes</td>
<td>Univ. de Las Pampas</td>
</tr>
<tr>
<td>Sillah Kargbo</td>
<td>Alberta Environment</td>
</tr>
<tr>
<td>Naba Adhikari</td>
<td>Alberta Environment</td>
</tr>
</tbody>
</table>
Wednesday: how can the various approaches for hydrol. prediction be implemented in semi-arid and arid regions given the availability of met. and catchm. data and current understanding of hydrology

A few basic definitions…
Semi-arid: a (sub-polar) region that receives precipitation at or below potential evapotranspiration

Warm

Cold
Approaches

• Empirical (e.g. SCS CN and, yes, the rational method)
• Statistical (frequency analysis, autoregressive models, etc.)
• Hydrologic models
 – conceptual
 – physically based
What is a prediction?

• Streamflow in space and time
• Groundwater levels, available volume
• Soil moisture
 – Fluxes and states
Some considerations specific to semi-arid and arid climates

- Groundwater usually very important if not unique water source
- Can’t separate short term from long term
- Most water comes from other climatic regions (either natural or man-made)
- Contributing area highly variable between events or years.
... more considerations

- Extreme variability in time and space of meteorological forcings (related question: is remote sensing an approach or a data source?)
- surface water/groundwater interaction
About approaches: 1) empirical methods

- OK for small scale, short term: it is usually for these conditions that these methods are developed, in the first place
- It might be possible to validate, improve, adapt them to local conditions when possible
- Not OK for long-term, large scale problems because of nonlinearity and moisture deficit uncertainty
2) Statistical methods (regression, geostatistics, stochastic time series, etc.)

- OK for large scale and long-term, at annual time steps
- Reasonable performance for data-gap filling (hindcast)
- Regionalization encouraged (remember: data rich areas)
- OK for capturing time variability, but caution required due to nonstationarity
2) Statistical cont’d.

- In arid regions: problems at the tails because distributions quite skewed
- Geospatial techniques
 - OK for temperature, radiation
 - Not OK for short-term precipitation (events), OK for long-term
3) Hydrologic models: conceptual

- e.g. HSPF, SWAT, HMS
- NOT for GW evaluation at local scale nor short term
- Inadequate for surface/GW interactions
- Poor performance in flashy streams
- Practical for planning purposes; caution when transferring parameters to ungauged basins
4) Hydrologic models: physically based

- e.g. MIKE-SHE, MESH, WADFLOW, CRHM, MODFLOW (?)

- Data hungry -> OK if data rich (related: is it possible to have a data rich semi-arid/arid region?)

- Energy balance VERY important in our regions

- Usually flexible in their implementation (modular nature)
4) Physically based, cont’d.

- Continuous simulation: variability in contributing areas
- Require dedicated and ad-hoc data collection campaigns -> scaling issues