PUB 2011
High Mountains
Data-sparse regions
Participants

- Ross Woods (R/P)
- Dan Moore (R)
- Scott Munro (R)
- Nina Köplin (R)
- Michael Allchin (R/P)
- Doug Boyle (R)
- Mani Raj Dahal (P)
- Sean Sullivan (P)
- Chris DeBeer (R)
- Stefan Kienzle (R/P)
- Matthias Bernhardt (R)
- Annelen Kahl (R)
- Kyle Terry (P)
- Jagat K. Bhudal (R/P)
How can predictive approaches be improved?

- Catchment characterization
- Scale influences
- Glacier-related processes
- Phase of precipitation
Catchment characterization (1)

- Grouped response unit (GRU) delineation
 - elevation
 - aspect (radiation loading)
 - land cover
 - underlying geology
 - landscape dependence
 - scale influences (e.g. representation of blowing snow or avalanching)
 - parsimony
Catchment characterization (2)

- HRU delineation
 - storage, connectivity, thresholds
 - subjective
 - testable?
Catchment characterization (3)

- Classification
 - Geology!
Scale considerations

♣ How to deal with information at different spatial resolutions: degrade higher resolution?
♣ High spatial resolution = pseudo-information?
Glacier-related processes

- Glacier dynamics
 - diurnal
 - seasonal
 - multi-year
 - transient boundary conditions
 - glacier response time as a similarity metric
- Debris-covered glaciers and ice-cored moraines
- Volume-area scaling vs. dynamic modelling
Phase of precipitation

Air temperature not always a reliable or transferable discriminator for rain vs snow

Need new observations and analysis of existing data sets
How to transfer information from data-rich to data-poor situations

- Catchment characterization
 - Thermal regime
 - Seasonality of precipitation
 - Land cover
 - Topographic complexity

- Models can be transferred if they incorporate the correct physics

- But, highly parameterized physics-based models can be pathologically sensitive to errors in input variables
How to transfer information from data-rich to data-sparse situations (2)

♣ Research basins are important for
 ♣ developing and testing simplified representations
 ♣ determining appropriate scales for process representation
How to transfer information from data-rich to data-poor situations (3)

- Precipitation is the most critical input yet is the least well characterized, even when gauged
 - Why not just install a stream gauge – the PUB problem then disappears?
 - Back-calculate accumulated winter precipitation based on SWE reconstruction
How to transfer information from data-rich to data-poor situations (4)

♣ Need to maintain data-rich infrastructure
♣ But short-term data richness can be useful
♣ Need to consider why, where and how accurate PUB applications should be: remember the user!