Hydrological Storage and Pathways in Alpine Headwaters: Lake O’Hara Study Update

Jaime Hood, Greg Langston, Danika Muir, Chris Donnelly, Alastair McClymont, M. Hayashi
Dept. of Geoscience, Univ. of Calgary
Unanswered Questions in Alpine Hydrology

• Where is groundwater stored?

• How large is groundwater storage?
 10 mm? 100 mm?

• How long is groundwater stored?
 days? weeks? months?

• How can these be represented in basin hydrology models?
Opabin Sub-Basin in Lake O’Hara Basin
Annual Snow Survey, April 16-21

1,200-1,500 depth measurements.

300-500 density measurements.
Snow Water Equivalent (SWE) Distribution

2009 SWE (mm)

1174

293

2007 SWE

0 250 500 Meters

2075 2125 2175 2225 2275 2325 elev. (m)
Remote Survey of Steep Slopes
Laser Range Finder: Poor man’s LiDAR

Validation Procedure
“Model” the depth distribution using Laser data. Measure the depth using conventional probes.

Results
Average measured snow depth = 1.74m
RMS error of modeled vs measured = 0.27m
SW Radiation: ArcGIS Solar Radiation Tool

Opabin AWS

E Tarn

Glacier

Babylon AWS

April 14, 11:00

Clear-sky radiation
Jul. 14, 11:00

SW Radiation 11:00 MDST
High: 1078
Low: 15
W/m²

July 14, 2008

Clear sky total
Observed
Diffuse

Radiation (W/m²)

0:00 6:00 12:00 18:00 0:00
Validation of SW Radiation: Babylon Site
Electrical Resistivity Results

Ice ridge

Tarn

Permafrost
Emerging Conceptual Model

- Dry moraine material (MM)
- Debris covered massive ice (MI)
- Degrading Permafrost (PF)
- Saturated Moraine Material (GW)
- Bedrock (BR)
- Wet Moraine Material (WMM)
Tracer Dilution Experiment, Aug. 2008

- 44 kg of NaCl released
- Concurrent energy-balance study
Estimation of Hydraulic Conductivity

- Use a 3D groundwater flow model, MODFLOW.
- Simulate the steady-state exchange of groundwater with the pond.
- Inverse determination of best-fit conductivity.

\[K_{\text{sat}} = 2 \times 10^{-4} \text{ m/s} \]
Groundwater Storage and Flow in Talus

Gauging Station

Tracer tests

Babylon Creek

tracer tests
rain gauge
gauging stn.
Groundwater Storage and Flow in Talus

Preliminary Analysis

- Storage time in the talus is in the order of < 1 week.
- High hydraulic conductivity (10^{-2} m/s) for loose sediments.
- Moderate conductivity (10^{-5} m/s) for a second "reservoir" – fractured bedrock??
Coupled Surface-Groundwater Model

Daily snowmelt (mm) June 6, 2008

Hydrologic landscape units

Distribute water inputs.
Couple with GW flow model.
Simulate basin outflow.
HBV–MODFLOW for this example.
Acknowledgements

People
Larry Bentley, Jackie Randell, Nathan Green, Josh Ouellet, Simon Martin, Kate Forbes, and many more

Funding Support
Biogeoscience Institute (U of Calgary)
Alberta Ingenuity Centre for Water Research
Canadian Foundation for Climate and Atmospheric Science (IP3 Network)
Environment Canada

Logistical Support
Lake O’Hara Lodge
Parks Canada