Spatial & temporal patterns & processes controlling duff moisture content

Dave Keith & E.A. Johnson
(keithdm@dal.ca)

University of Calgary

October 17th, 2009
Duff & forest fires

- Duff consumed by smoldering combustion
Duff & forest fires

- Duff consumed by smoldering combustion
 - Distinct patterns often remain
Duff consumed by smoldering combustion
 - Distinct patterns often remain
 - Duff moisture content primary control on consumption
Duff consumed by smoldering combustion
- Distinct patterns often remain
- Duff moisture content primary control on consumption
- Seedlings do poorly where duff remains
Duff consumption & regeneration patterns
Objectives

- Establish & model the processes controlling the duff water budget
Objectives

- Establish & model the processes controlling the duff water budget
 - In time (dry vs. transient periods) and
Objectives

- Establish & model the processes controlling the duff water budget
 - In time (dry vs. transient periods) and
 - space (hillslopes)

Dave Keith & E.A. Johnson (keithdm@dal.ca)
Objectives

- Establish & model the processes controlling the duff water budget
 - In time (dry vs. transient periods) and
 - space (hillslopes)
- Using both field experimentation and modeling

Dave Keith & E.A. Johnson (keithdm@dal.ca)

Duff moisture content variation in space & time
Marmot Basin - Kananaskis, Alberta $\approx 9.6 \text{km}^2$
Transient & Dry Periods

- Two periods evident

![Graph showing moisture content variation](image.png)
Transient & Dry Periods

- Two periods evident
 - Rapid drying within 24 hours of precipitation (Transient Periods)

![Graph showing moisture content variation](image)

Dave Keith & E.A. Johnson (keithdm@dal.ca) Duff moisture content variation in space & time
Transient & Dry Periods

- Two periods evident
 - Rapid drying within 24 hours of precipitation (Transient Periods)
 - Diurnal drying pattern (Dry Periods)

![Graph showing moisture content variation over time](image)
Diurnal Cycles

- Diurnal cycles slow drying in the F layer (top) of the duff
Diurnal Cycles

- Diurnal cycles slow drying in the F layer (top) of the duff
- Diurnal cycles influenced by:
 - Evaporative fluxes
 - H layer redistribution
 - Not the mineral soil disconnected from duff
Diurnal Cycles

- Diurnal cycles slow drying in the F layer (top) of the duff
- Diurnal cycles influenced by
 - Evaporative fluxes

Diurnal cycles slow drying in the F layer (top) of the duff. Diurnal cycles are influenced by:

1. Evaporative fluxes

Dave Keith & E.A. Johnson (keithdm@dal.ca)
Diurnal Cycles

- Diurnal cycles slow drying in the F layer (top) of the duff
- Diurnal cycles influenced by
 1. Evaporative fluxes
 2. H layer redistribution

Duff moisture content variation in space & time
Diurnal cycles slow drying in the F layer (top) of the duff

Diurnal cycles influenced by

1. Evaporative fluxes
2. H layer redistribution
3. But not the mineral soil

Dave Keith & E.A. Johnson (keithdm@dal.ca)

Duff moisture content variation in space & time
Diurnal Cycles

- Diurnal cycles slow drying in the F layer (top) of the duff
- Diurnal cycles influenced by:
 1. Evaporative fluxes
 2. H layer redistribution
 3. But not the mineral soil
- Disconnected from duff
Modeling Diurnal Cycles

- Used a coupled heat and mass transfer model (TOUGH2 - Pruess 1999)
Modeling Diurnal Cycles

- Used a coupled heat and mass transfer model (TOUGH2 - Pruess 1999)
 - Includes multiphase version of Darcy’s law
Modeling Diurnal Cycles

- Used a coupled heat and mass transfer model (TOUGH2 - Pruess 1999)
 - Includes multiphase version of Darcy’s law
 - Liquid and vapor fluxes
Modeling Diurnal Cycles

- Used a coupled heat and mass transfer model (TOUGH2 - Pruess 1999)
 - Includes multiphase version of Darcy’s law
 - Liquid and vapor fluxes
- 1-D version implemented to model diurnal cycles
Modeling Diurnal Cycles

- Used a coupled heat and mass transfer model (TOUGH2 - Pruess 1999)
 - Includes multiphase version of Darcy’s law
 - Liquid and vapor fluxes
- 1-D version implemented to model diurnal cycles
- 3-D version implemented for spatial model (Transient Periods)
Modeling Diurnal Cycles

- Used a coupled heat and mass transfer model (TOUGH2 - Pruess 1999)
 - Includes multiphase version of Darcy’s law
 - Liquid and vapor fluxes
- 1-D version implemented to model diurnal cycles
- 3-D version implemented for spatial model (Transient Periods)
- Overall mass balance
 \[
 \frac{d}{dt} \int_{V_n} M dV_n = \int_{\Gamma_n} m \cdot n d\Gamma_n + \int_{V_n} \nu dV_n \quad (1)
 \]
Modeling Diurnal Cycles

- Used a coupled heat and mass transfer model (TOUGH2 - Pruess 1999)
 - Includes multiphase version of Darcy’s law
 - Liquid and vapor fluxes
- 1-D version implemented to model diurnal cycles
- 3-D version implemented for spatial model (Transient Periods)
- Overall mass balance

$$\frac{d}{dt} \int_{V_n} M dV_n = \int_{\Gamma_n} m \cdot n d\Gamma_n + \int_{V_n} \nu dV_n \quad (1)$$

- Overall energy balance

$$\frac{d}{dt} \int_{V_n} Q dV_n = \int_{\Gamma_n} q \cdot n d\Gamma_n + \int_{V_n} \omega dV_n \quad (2)$$
Diurnal Model Results

- The 1-D model captured the dynamics
Diurnal Model Results

- The 1-D model captured the dynamics
- Closely simulates actual conditions
Diurnal Model Results

- The 1-D model captured the dynamics
 - Closely simulates actual conditions
 - Reproduces the cycles well both in size and timing

[Diagrams showing model results]

Dave Keith & E.A. Johnson (keithdm@dal.ca) Duff moisture content variation in space & time
Diurnal Model Results

- The 1-D model captured the dynamics
 - Closely simulates actual conditions
 - Reproduces the cycles well both in size and timing
 - Cycles and drying driven by evaporative forcing

![Diurnal Model Results Graphs]

Dave Keith & E.A. Johnson (keithdm@dal.ca)

Duff moisture content variation in space & time
Diurnal Model Results

- The 1-D model captured the dynamics
 - Closely simulates actual conditions
 - Reproduces the cycles well both in size and timing
 - Cycles and drying driven by evaporative forcing
 - Due to coupled transport of liquid and vapor between F and H layer

![Graph showing model results](image)
Rapid Redistibution

- Rapid movement during and immediately following rainfall

![Graph showing rainfall and moisture content over time.](image)
Rapid Redistribution

- Rapid movement during and immediately following rainfall
- Results in spatial patterns across some hillslopes

![Graph showing moisture content variation over time](image-url)
Hillslopes

- Two experimental hillslopes

Two experimental hillslopes:

- One spruce, one pine
- Twenty transects sampled
- ≈ weekly from June-September

Detailed spatial and temporal moisture content

F layer

Dave Keith & E.A. Johnson (keithdm@dal.ca)

Duff moisture content variation in space & time
Hillslopes

- Two experimental hillslopes
- One spruce, one pine

Dave Keith & E.A. Johnson (keithdm@dal.ca)
Hillslopes

- Two experimental hillslopes
- One spruce, one pine
- Twenty transects sampled \approx weekly from June-September
Hillslopes

- Two experimental hillslopes
- One spruce, one pine
- Twenty transects sampled \(\approx\) weekly from June-September
 - Detailed spatial and temporal moisture content
Hillslopes

- Two experimental hillslopes
- One spruce, one pine
- Twenty transects sampled ≈ weekly from June-September
 - Detailed spatial and temporal moisture content
 - F layer

Dave Keith & E.A. Johnson (keithdm@dal.ca)

Duff moisture content variation in space & time
Hillslope Processes

- Processes appear to differ between hillslopes
Hillslope Processes

- Processes appear to differ between hillslopes
- Spruce hillslope
Hillslope Processes

- Processes appear to differ between hillslopes
- Spruce hillslope
 - Hillslope "shape" (convergent versus divergent)

![Graph of Duff moisture content variation in space & time](image.png)
Hillslope Processes

- Processes appear to differ between hillslopes
- Spruce hillslope
 - Hillslope “shape” (convergent versus divergent)
- Pine hillslope
Hillslope Processes

- Processes appear to differ between hillslopes
 - Spruce hillslope
 - Hillslope “shape” (convergent versus divergent)
 - Pine hillslope
 - Solar Radiation best correlate
Canopy Influence

- Interception major impact spatially
Canopy Influence

- Interception major impact spatially
- Patterns hold throughout the season

![Graph showing moisture content variation over time with open and under canopy conditions.](image)
Canopy Influence

- Interception major impact spatially
- Patterns hold throughout the season
- Pattern similar between hillslopes

Dave Keith & E.A. Johnson (keithdm@dal.ca)
Duff moisture content variation in space & time
Hillslope Model

- Simple model hillslope

![3D model of hillslope](image)
Hillslope Model

- Simple model hillslope
- Convergent and divergent regions
Hillslope Model

- Simple model hillslope
- Convergent and divergent regions
- Regularly spaced canopy

Duff moisture content variation in space & time
Hillslope Model Results

- Results consistent with field
Hillslope Model Results

- Results consistent with field
- Hillslope shape matters

![Graph showing moisture content variation over time](image-url)
Hillslope Model Results

- Results consistent with field
- Hillslope shape matters
 - Rapid vertical and lateral redistribution

Dave Keith & E.A. Johnson (keithdm@dal.ca)
Hillslope Model Results

- Results consistent with field
- Hillslope shape matters
 - Rapid vertical and lateral redistribution
- Canopy matters

Dave Keith & E.A. Johnson (keithdm@dal.ca)
A tale of 2 seasons

- Local control (vertical movement) during dry periods
A tale of 2 seasons

- Local control (vertical movement) during dry periods
- Diurnal cycles driven by evaporation
A tale of 2 seasons

- Local control (vertical movement) during dry periods
- Diurnal cycles driven by evaporation
 - Result of coupled vapor and liquid fluxes between H and F layers
A tale of 2 seasons

- Local control (vertical movement) during dry periods
- Diurnal cycles driven by evaporation
 - Result of coupled vapor and liquid fluxes between H and F layers
- Short rapid redistribution results in hillslope patterns
A tale of 2 seasons

- Local control (vertical movement) during dry periods
- Diurnal cycles driven by evaporation
 - Result of coupled vapor and liquid fluxes between H and F layers
- Short rapid redistribution results in hillslope patterns
 - But in thin duff layers no evidence of lateral redistribution
A tale of 2 seasons

- Local control (vertical movement) during dry periods
- Diurnal cycles driven by evaporation
 - Result of coupled vapor and liquid fluxes between H and F layers
- Short rapid redistribution results in hillslope patterns
 - But in thin duff layers no evidence of lateral redistribution
- Canopy is the major influence on duff moisture content
A tale of 2 seasons

- Local control (vertical movement) during dry periods
- Diurnal cycles driven by evaporation
 - Result of coupled vapor and liquid fluxes between H and F layers
- Short rapid redistribution results in hillslope patterns
 - But in thin duff layers no evidence of lateral redistribution
- Canopy is the major influence on duff moisture content
- Simple model hillslope
A tale of 2 seasons

- Local control (vertical movement) during dry periods
- Diurnal cycles driven by evaporation
 - Result of coupled vapor and liquid fluxes between H and F layers
- Short rapid redistribution results in hillslope patterns
 - But in thin duff layers no evidence of lateral redistribution
- Canopy is the major influence on duff moisture content
- Simple model hillslope
 - Shows rapid redistribution able to recreate pattern
Local control (vertical movement) during dry periods

Diurnal cycles driven by evaporation
- Result of coupled vapor and liquid fluxes between H and F layers

Short rapid redistribution results in hillslope patterns
- But in thin duff layers no evidence of lateral redistribution

Canopy is the a major influence on duff moisture content

Simple model hillslope
- Shows rapid redistribution able to recreate pattern
- Shows canopy cover also has a large affect
Thank You, Merci

- Family, friends, foes, and field flunkies who’ve helped with this research
 - Kaden & Nadine
 - Dr. Johnson
 - Lindsey Park
 - Heather Conquergood
 - Marianne Chase
 - Paul Moquin
 - Ellen Lea

NSERC
CRSNG
Canadian Rockies and Foothills Biogeoscience Institute
University of Calgary