Comparison of Genomic Selection Models for Wheat Breeding

Teketel Haile
Ph.D. Candidate

Department of Plant Sciences/Crop Development Centre
Genomic or Genomewide Selection (GS)

• MAS without identifying markers associated with a trait
• Considers all markers without significance test
• Prediction of genomic estimated breeding values (GEBVs)
• Captures major and small effect QTL
• Unbiased marker effect estimates
• No multiple testing
Genomic Selection Procedures

Training population

Phenotypes

+ Marker Genotypes

Train Model

Marker Genotypes

Selection candidates

\[GEBV = \sum_{i=1}^{p} X_i \hat{g}_i \]

\[y = \mu + x g + \varepsilon \]

Estimate marker effects
Cross-validation

Selection
Genomic Selection

• Widely used in livestock breeding programs
 - Long generation interval
 - Milk production on bulls, meat quality

• Improved genetic gain

• Growing interest in crop breeding programs

• Insufficient information for practical application

• Empirical studies are necessary to validate GS in wheat breeding
Hypothesis:

• GS has the potential to predict GEBVs with accuracy sufficient to allow selection without repeated phenotyping.

Objectives:

1) To evaluate single and multiple trait GS models for wheat breeding.

2) To examine prediction accuracy when modelling G × E interaction.
Single and Multiple Trait Prediction

- 231 Spring bread wheat lines
- Genotyped using the wheat 90K iSelect assay
- 18K polymorphic SNPs used for analysis
- Traits
 - Days to heading
 - Days to maturity
 - Plant height
 - Grain yield
 - Test weight
 - 1000-kernel weight
 - Grain protein
 - Falling number
 - SDS sedimentation
Statistical Methods

1) Single Trait Models
- Ridge regression BLUP
- Genomic BLUP
- Bayesian Lasso
- Bayesian ridge regression
- BayesA
- BayesB
- BayesC
- RKHS
- RKHS-KA

2) Multiple Trait Models
- MT-BayesA
- MT-BayesA matrix
- MT-BayesA scale

• Models were fitted in R
 BGLR package (Perez and de los Campos, 2014)
 rrBLUP package (Endelman, 2011)
 C programs (Jiang et al., 2015)
Fivefold Cross-Validation

• Divide the population into five groups
• Use four to train the model and one to validate
• Accuracy in each fold is the correlation between GEBVs and phenotypes of individuals in the validation
• Repeated until each group is used as validation
• Averages of the fivefold reported
Modelling $G \times E$ Interaction

- 81 spring bread wheat lines
- Three approaches using G-BLUP (Lopez-Cruz et al., 2015)
 1) $M \times E$ interaction model ($M \times E$)
 2) Across-environment (AcrossEnv)
 3) Single-environment (SingleEnv)
- 80% TP : 20% validation
- Prediction was made for grain yield
- Two cross-validation schemes
Cross-Validation Schemes

CV1: Prediction for newly developed lines

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>Y11</td>
<td>Y12</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
</tr>
<tr>
<td>Line 2</td>
<td>Y21</td>
<td>Y22</td>
<td>Y23</td>
<td>Y24</td>
<td>Y25</td>
</tr>
<tr>
<td>Line 3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Line 4</td>
<td>Y41</td>
<td>Y42</td>
<td>Y43</td>
<td>Y44</td>
<td>Y45</td>
</tr>
<tr>
<td>Line 5</td>
<td>Y51</td>
<td>Y52</td>
<td>Y53</td>
<td>Y54</td>
<td>Y55</td>
</tr>
</tbody>
</table>

CV2: Prediction for incomplete field trials

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E4</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 1</td>
<td>Y11</td>
<td>NA</td>
<td>Y13</td>
<td>Y14</td>
<td>Y15</td>
</tr>
<tr>
<td>Line 2</td>
<td>Y21</td>
<td>Y22</td>
<td>NA</td>
<td>Y24</td>
<td>Y25</td>
</tr>
<tr>
<td>Line 3</td>
<td>Y31</td>
<td>Y32</td>
<td>Y33</td>
<td>Y34</td>
<td>NA</td>
</tr>
<tr>
<td>Line 4</td>
<td>Y41</td>
<td>Y42</td>
<td>Y43</td>
<td>NA</td>
<td>Y45</td>
</tr>
<tr>
<td>Line 5</td>
<td>NA</td>
<td>Y52</td>
<td>Y53</td>
<td>Y54</td>
<td>Y55</td>
</tr>
</tbody>
</table>

Jarquín et al. 2014
Results
Single Trait Prediction Accuracy

<table>
<thead>
<tr>
<th>Trait</th>
<th>RR-BLUP</th>
<th>G-BLUP</th>
<th>BA</th>
<th>BB</th>
<th>BC</th>
<th>BL</th>
<th>BRR</th>
<th>RKHS</th>
<th>RKHS-KA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>0.82</td>
<td>0.62</td>
<td>0.58</td>
<td>0.51</td>
<td>0.57</td>
<td>0.84</td>
<td>0.64</td>
<td>0.57</td>
<td>0.84</td>
</tr>
<tr>
<td>HT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YLD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TKW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple Trait Prediction Accuracy

![Bar chart showing the prediction accuracy of different traits using various methods. The traits include HD, HT, MAT, YLD, TWT, TKW, PRO, FN, and SDS. The methods compared are ST-BayesA, MT-BayesA, MT-BayesA Matrix, and MT-BayesA Scalar. The accuracy is measured as the correlation coefficient (r(GEBV:Phenotype)).]
Modelling GxE Interaction (Yield)

CV1

CV2

KER: Kernen
SWC: Swift Current
Conclusion

• No difference among single trait prediction models.
• Multiple trait prediction accuracy was similar or lower than single trait prediction accuracy.
• No relationship between trait heritability and accuracy.
• No benefit of modelling $G \times E$ interaction.
• Accuracies obtained in this study are encouraging.
• In wheat, GS can be implemented using G-BLUP.
Acknowledgements

- Dr. Curtis Pozniak
- Advisory Committee
 - Dr. Aaron Beattie
 - Dr. Fiona Buchanan
 - Dr. Pierre Hucl
 - Dr. Yuguang Bai
- Durum field crew
- Durum molecular lab crew
- Wheat quality lab crew
- Durum professional staff
Thank You!