Characterization of the morphological, phenotypic, and molecular effects of 17α-ethynylestradiol exposure during early development in *Xenopus laevis*

Amber Tompsett, Steve Wiseman, Eric Higley, Hong Chang, John P. Giesy, and Markus Hecker

Toxicology Centre, University of Saskatchewan
Introduction

• Estrogenic chemicals in the environment
 – Exposure hypothesized to cause adverse effects
 • Feminization/demasculinization of males
 – Wide variety of species are affected by exposure

• 17α-ethynylestradiol (EE2)
 – Potent estrogen of environmental concern
 – Present in oral contraceptives
 • Not fully removed by conventional sewage treatment
 • Detectable in surface water
Introduction

• *Xenopus laevis*
 – Common laboratory amphibian
 – Exquisitely sensitive to estrogenic exposures during sexual differentiation
 • Male-to-female phenotypic sex reversal
 • Recently discovered sex-linked gene

• EE2 and *X. laevis* used as model systems
 – Morphological and phenotypic effects of EE2 exposure
 – Molecular effects underlying sex reversal
Experimental design

• Dosing Regime*
 – FETAX control and 0.0025% ethanol solvent control
 – 0.1, 1, and 10 µg/L EE2

• Tadpole samples
 – Near sexual differentiation

• Experiment terminated at 96 d
 – Morphometrics and phenotyping
 – Molecular samples
 – Histological samples

*Estrogen equivalent concentrations in surface water normally range from 3-30 ng/L
Days to Metamorphosis

Survival analysis followed by ANOVA, post-hoc Tukey's test; significant differences (p<0.05) denoted by different letters.
Phenotyping: Gross Morphology

Fisher’s Exact Tests; significant differences denoted by different letters
DM-W Based Genotypic Sexing

- *X. laevis* has ZW chromosomal sex determination
 - ZW female; ZZ male
 - *DM-W* resides on the W chromosome

- Multiplex *DM-W/DMRT1* PCR genotyping
 - Genomic DNA
 - PCR products visualized on a gel
Genotypic Sex Ratios

*Initial data from a subsample of EE2 treated animals.
Initial Comparison of Genotyping and Phenotyping

Control Phenotype | Control Genotype | SC Phenotype | SC Genotype | EE2 Treated Phenotype | EE2 Treated Genotype

% Ambiguous | % Female | % Male
Gross Phenotypic Morphology

1. Genetic female
2. Sex-reversed genetic male
3. Genetic male
Transcriptome Analysis

• Nieukwoop-Faber Stage 53 Tadpoles
 – Undergoing sexual differentiation
 – Control and 100 µg/L EE2 treated animals
 • Male genotype

• **Illumina Sequencing**
 – RNA Seq
 – Single-end read
 – 75 bp read length
Initial Transcriptome Analysis

• CLC Genomics Workbench
 – Reads filtered and trimmed
 – Mapped to *X. laevis* published mRNAs
 – Expression analysis

• General Statistics
 – 70% of reads mapped to an mRNA transcript
 – 95% of transcripts were detected at least once
Transcriptome Analysis

- Overview of changes

- 73% of genes are upregulated at least 2-fold
- 12% of genes are downregulated at least 2-fold
- 15% of genes remain unchanged

22 genes upregulated at least 15-fold
66 genes downregulated at least 15-fold
Types of Genes Impacted

• Up-regulated
 – Estrogen/steroid hormone metabolism
 – Cardiac/skeletal muscle contraction and growth
 – DNA repair

• Down-regulated
 – Redox metabolic activity
 – Axonogenesis and synaptogenesis
 – Metabolism of neurotransmitters
<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrogen sulfotransferase (sult1e1)</td>
<td>+19</td>
</tr>
<tr>
<td>Frizzled-related protein (frzb-1)</td>
<td>+24</td>
</tr>
<tr>
<td>Troponin T Type 3 (tnnt3)</td>
<td>+37</td>
</tr>
<tr>
<td>Cu-Zn superoxide dismutase (sod)</td>
<td>-23</td>
</tr>
<tr>
<td>Synaptosomal associated protein 25 (snap-25)</td>
<td>-85</td>
</tr>
<tr>
<td>Sulfotransferase 4a1 (sult4a1)</td>
<td>-23</td>
</tr>
</tbody>
</table>
Biological Relevance of EE2 Exposure

• Male-to-female sex reversal

• May impact individual fitness
 – Delayed metamorphosis and smaller size

• Changes in the male transcriptome at sexual differentiation
 – Estrogen/hormone metabolism
 – Other processes
Additional Ongoing Analysis

• Histology of gonads
 – Gross morphology of small animals unclear

• Parallel wood frog experiment
 – Native, non-model species
Acknowledgements

• Toxicology Centre
 – ETL and ATRF
 – Jon Doering
 – Jason Raine
• Canada Research Chairs Program