Interconversion of Hydroxylated and Methoxylated Polybrominated Diphenyl Ethers in Japanese Medaka

J.P.G. is supported by the Canada Research Chair Program and an at large Chair Professorship, the Natural Sciences and Engineering Research Council of Canada, a research grant from Western Economic Diversification Canada, and an instrumentation grant from the Canadian Foundation for Innovation to J.P.G.

Department of Biomedical Veterinary Sciences, University of Saskatchewan, Saskatoon, SK, Canada, School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.

Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.

INTRODUCTION

- Polybrominated diphenyl ethers (PBDEs) and structurally related hydroxylated (OH-) and methoxylated (MeO-) PBDEs are ubiquitous in the environment.
- Several origins for OH-PBDEs and MeO-PBDEs have been suggested.
 - Ortho-substituted OH-PBDEs and MeO-PBDEs are formed as naturally occurring compounds in the marine environment.
 - Result from biotransformation of synthetic PBDEs
 - Demethylation of natural MeO-PBDEs is a major contributor of OH-PBDEs.
- We have previously demonstrated, in vitro, that 6-MeO-BDE-47 is a precursor for 6-OH-BDE-47. In this same study no 6-OH-BDE-47 was generated during the microsomal metabolism of BDE-47. Currently no direct evidence of this pathway of OH-PBDE formation.

OBJECTIVES

Objective 1: Establish maternal transfer of BDE-47, 6-MeO-BDE-47 and 6-OH-BDE-47, and metabolites,

- Eggs were collected each morning (days 0-14) during the exposure period.
- Medaka were fed diets of food spiked with BDE-47, 6-OH-BDE-47 or 6-MeO-BDE-47.
- All exposures were performed in duplicate tanks.
- Medaka were fed diets of food spiked with BDE-47, 6-OH-BDE-47 or 6-MeO-BDE-47, or acetone (vehicle control) for 14 days.
- Eggs were collected each morning (days 0-14) during the exposure period.
- On day 16 six female fish were collected from each tank and liver and liver-free carcasses were collected for analysis of target chemical concentrations.

MEDAKA EXPOSURE

- Sexually mature Japanese medaka (Oryzias latipes)(8 females and 4 males) randomly assigned to 10L tanks containing 6L of dechlorinated tap water.
- All exposures were performed in duplicate tanks.
- Medaka were fed diets of food spiked with BDE-47, 6-OH-BDE-47 or 6-MeO-BDE-47, or acetone (vehicle control) for 14 days.
- Eggs were collected each morning (days 0-14) during the exposure period.
- On day 16 six female fish were collected from each tank and liver and liver-free carcasses were collected for analysis of target chemical concentrations.

RESULTS

Purity of Dosing Solutions

Table 1: Concentrations of 6-OH-BDE-47, 6-MeO-BDE-47 and BDE-47 in Spiked Food (ng/g dry weight) and Stock Standard Solutions (ng/ml).

<table>
<thead>
<tr>
<th>Analyzed Chemical</th>
<th>BDE-47</th>
<th>6-MeO-BDE-47</th>
<th>6-OH-BDE-47</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDE-47 Food</td>
<td>< 0.02</td>
<td>0.1</td>
<td>1.6</td>
</tr>
<tr>
<td>6-OH-BDE-47 Food</td>
<td>0.90</td>
<td>0.2</td>
<td>15</td>
</tr>
<tr>
<td>6-MeO-BDE-47 Food</td>
<td>< 0.02</td>
<td>0.2</td>
<td>28.3</td>
</tr>
<tr>
<td>BDE-47 Food</td>
<td>< 0.02</td>
<td>0.2</td>
<td>21,000</td>
</tr>
<tr>
<td>6-OH-BDE-47 Stock</td>
<td>1,500,000</td>
<td>4,300</td>
<td>1,900</td>
</tr>
<tr>
<td>6-MeO-BDE-47 Stock</td>
<td>< 0.8</td>
<td>1,300,000</td>
<td>4,800</td>
</tr>
<tr>
<td>BDE-47 Stock</td>
<td>< 0.8</td>
<td>< 1.0</td>
<td>50,000</td>
</tr>
</tbody>
</table>

- 6-OH-BDE-47 not an impurity in BDE-47 or 6-MeO-BDE-47 food.
- 6-MeO-BDE-47 was detected in the fish food, but did not affect conclusions.
- Purity tests were not reported in previous exposure studies, however the possible contribution of impurities of MeO-PBDEs in commercial rat food containing fish or shrimp cannot be neglected.

CONCLUSIONS

- This study presents direct in vitro evidence of biotransformation of 6-MeO-BDE-47 to 6-OH-BDE-47.
- Biotransformation of 6-OH-BDE-47 to 6-MeO-BDE-47 was demonstrated in vivo, but the conversion was not observed in vitro (liver microsomes).
- The previously hypothesized formation of OH-PBDEs from synthetic BDE-47 did not occur.
- Biotransformation products formed in female medaka were transferred to eggs.

ACKNOWLEDGEMENTS

- This research was supported by Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, a research grant from Western Economic Diversification Canada, and an instrumentation grant from the Canadian Foundation for Innovation to J.P.G.
- J.P.G. is supported by the Canada Research Chair Program and the Natural Sciences and Engineering Research Council of Canada.