Ketoconazole increases the endocrine disrupting potential of ibuprofen exposure in the H295R cells and Japanese medaka

Kyunhee Ji, Kyungho Choi, Kyungho Kwak, Jong-Seong Khim, Xiaowei Zhang, John P. Giesy

1 School of Public Health, Seoul National University, Seoul, 151-742 Korea
2 College of Life Science, Korea University, Seoul, 136-713 Korea
3 School of the Environment, Nanjing University, Nanjing, 210093 China
4 Toxicology Centre and Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7J 5B3 Canada

Introduction

- Pharmaceutical residues found in the aquatic environment occur as mixtures, while most of toxicity tests were made on individual chemicals.
- In the present study, we investigated whether exposure to low level ketoconazole would increase the estrogenicity of ibuprofen exposure.

Materials & Methods

- **In vitro H295R cell bioassay**
 - H295R cells were exposed to ibuprofen alone at concentrations ranging from 0.02 to 20 mg/mL, or in combination with ketoconazole (5 ng/mL) for 48 hr.
 - Hormone measurements
 - Culture medium was extracted twice with 2.5 mL diethyl ether, and hormones were measured by enzyme-linked immunosorbent assay.
 - Aromatase activity assay
 - Direct and indirect effects on aromatase activity were measured by the rate of conversion of 17β-androstenedione to estrone using liquid scintillation counter.
 - Quantitative PCR assay
 - Transcription of five steroidogenic genes (3β-HSD2, CYP11β2, CYP17, CYP19, and 17β-HSD) plus one housekeeping gene (β-actin) were measured using real-time PCR.

- **In vivo Japanese medaka exposure**
 - Male adult medaka (6 fishes/group) were exposed to ibuprofen alone at concentrations ranging from 0.02 to 0.2 mg/mL or with ketoconazole (10 µg/L) for 14 d.
 - On day 14, all surviving fish were euthanized for measurement of sex hormones and related mRNA expressions.

Results & Discussion

- **In vitro H295R cell bioassay**
 - 17β-estradiol (E2) and testosterone (T) measurements
 - Exposure to ibuprofen resulted in significant increase of E2.
 - In combination with ketoconazole, E2 production by ibuprofen exposure was more elevated.
 - Aromatase activity assay
 - Exposure to ibuprofen resulted in significant increase of direct aromatase activity.
 - When 5 ng/mL of ketoconazole was added, the extent of increase in aromatase activity became greater, i.e., up to 1.5-fold compared to ibuprofen only exposure.
 - However, direct aromatase activity did not change.
 - Mechanisms of ibuprofen and ketoconazole exposure
 - Expression of COX2 mRNA was down-regulated in both groups.
 - Expression of CYP11B2 mRNA was up-regulated in ibuprofen-exposed group, whereas CYP11B2 mRNA expression was down-regulated in ibuprofen-ketoconazole-exposed group.
 - CYP19 and 17β-HSD mRNA expression were observed.

<table>
<thead>
<tr>
<th>Gene</th>
<th>IBP 0.02 mg/L (µg/L)</th>
<th>IBP 0.2 mg/L (µg/L)</th>
<th>IBP+KCZ 0.02 mg/L (µg/L)</th>
<th>IBP+KCZ 0.2 mg/L (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP19</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>17β-HSD</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>CYP17</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>CYP11B2</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>17β-HSD</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>CYP19/17β-HSD</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
</tbody>
</table>

- **Quantitative PCR assay**
 - In cells exposed to ibuprofen, the significant differences in CYP11B2 mRNA expression were observed.
 - However, with a combined exposure to ibuprofen and ketoconazole resulted in an elevated expression of CYP17, CYP19, and CYP11B2 mRNAs compared to ibuprofen exposure alone.

<table>
<thead>
<tr>
<th>Gene</th>
<th>IBP 0.02 mg/L (µg/L)</th>
<th>IBP 0.2 mg/L (µg/L)</th>
<th>IBP+KCZ 0.02 mg/L (µg/L)</th>
<th>IBP+KCZ 0.2 mg/L (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP19</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>17β-HSD</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>CYP17</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>CYP11B2</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>17β-HSD</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
<tr>
<td>CYP19/17β-HSD</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
<td>1.00 ± 0.33</td>
</tr>
</tbody>
</table>

- **In vivo Japanese medaka exposure**
 - E2 and T measurements
 - Ibuprofen only did not cause any significant effects on E2 concentration compared to that of control.
 - In combination with ketoconazole, however, E2 production by ibuprofen exposure was more elevated.
 - Significantly lower concentration of T was observed in combination with ketoconazole.

Conclusion

- We have shown that non-effective concentrations of ketoconazole can increase the potential for endocrine disrupting effects of ibuprofen in both human adrenal cell line and the freshwater fish.
- Potential consequences of such mixture toxicity should warrant further investigation.

For questions or comments please email me at jkh526@snu.ac.kr