Sono-chemical treatment of per- and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor

Vitthal L. Golea, Reyes Sierra-Alvarézb, Hui Pengc, John P. Giesyc, Pierre Deymiera, Manish Keswani

a Department of Materials Science and Engineering, The University of Arizona, P.O. Box 210012, Tucson, AZ, USA
b Department of Chemical and Environmental Engineering, The University of Arizona, P.O. Box 210011, Tucson, AZ, USA
c Department of Biomedical Sciences and Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada

ARTICLE INFO

Keywords:
AFFF
PFAS
Sono-chemical reactor
Cavitational activity
ANSUL
3M

ABSTRACT

Aqueous film-forming foams (AFFFs) contain a mixture of organic chemicals, including per- and poly-fluorinated, alkyl sulfonate substances (PFAS) (1–5%, w/w). Some longer-chain PFAS can be toxic, moderately bioaccumulative and persistent in the environment. In the present work, decomposition of PFAS present in two commercially available AFFFs (ANSUL- and 3M-) was investigated using a sono-chemical reactor of volume 91 L. The reactor consists of 12 transducers with operating frequencies of 1 MHz or 500 kHz and total input power of 12 kW. Degradation of PFAS performed using various dilutions of AFFF revealed that release of F⁻ and SO₄²⁻ ions was inversely proportional to initial pH of up to 4. Defluorination of ANSUL-AFFF resulted in an increase in the concentration of F⁻ released from 55.6 ± 0.3 µM (500× dilution) to 58.6 ± 0.6 (25× dilution), while for 3M AFFF it increased from 19.9 ± 0.7 µM (500× dilution) to 217.1 ± 2.4 µM (25× dilution). Though amounts of F⁻ released were less for ANSUL-AFFF than for 3M-AFFF, there was a considerable increase in removal of TOC and release of SO₄²⁻ present in ANSUL-AFFF. Approximately 90.5% and 26.6% reduction of perfluoralkyl sulfonates (PFSA) and perfluoralkyl carboxylates (PFCA) in 3M, respectively, and 38.4% reduction of fluorotelomer sulfonates in ANSUL-AFFF were achieved in 13 h. Estimated costs of energy for the treatment of ANSUL-AFFF and 3M-AFFF at a 500× dilution were $0.015 ± 0.0001/L and $0.019 ± 0.0002/L, respectively.

1. Introduction

Fluorinated aqueous film-forming foams (AFFFs) have extensive uses for controlling petroleum-based fires at airports, especially Air Force stations, naval facilities, oil refineries and automotive races. AFFFs is a mixture of hydrocarbons and per-fluorochemical surfactants (1–5% w/w) [1,2]. Per- and poly-fluoroalkyl substances (PFASs) have unique amphiphilic properties that impart the foam with properties, such as high spreadability, on hydrocarbon fuel that allow AFFFs to separate fuel from oxygen in the air and thus quench the fire [3]. PFAS-based surfactants are amphiphilic and resistant to combustion and thermally stable, which are properties that impart advantages over hydrocarbon surfactants. This is due in part to the non-polar group of perfluorocarbon tail of hydrophobic and oleophobic properties [4–6].

Large quantities of AFFFs that have been used at U.S. Air Force bases for training and routine operations have resulted in widespread contaminated of groundwater with PFASs [7]. Groundwater in areas surrounding some airports, especially at Air Force bases, is contaminated with PFAS [8]. As much as 40–100% of PFAS released remains in groundwater even 20 years after being released to the environment [1,2]. Due to growing environmental concerns associated with releases of PFASs, uses of AFFFs containing longer-chain PFASs, such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) have been discontinued for military operations [9]. It is estimated that approximately 11 million liters of AFFFs are left untreated at various air-force stations across the USA. Several studies have been directed towards the treatment of PFASs in AFFFs by US-EPA [8,9]. Recently (May 2016), the United States Environmental Protection Agency (US-EPA) set a new lifetime health advisory of 70 ng/L for PFOS and PFOA combined in drinking water [10].

https://doi.org/10.1016/j.ultsonch.2018.02.014
Received 6 August 2017; Received in revised form 7 January 2018; Accepted 6 February 2018
Available online 22 February 2018
1350-4177/ © 2018 Elsevier B.V. All rights reserved.
Due to the high strength of C–F bonds, PFASs are not easily degraded by microbes under environmental conditions [7]. Only partially fluorinated chains are biodegradable [2]. Conventional techniques for treatment of groundwater such as reverse osmosis, nano-filtration, and activated carbon are not effective at removing PFASs, but sono-chemical degradation can be effective [8,11]. Sono-chemical effects are produced by cavitation caused by interactions of ultrasonic irradiation with aqueous solutions [12–14]. During cavitation, temperatures produced inside bubbles are from 4000 to 10,000 K, and at or near the interface of the bubble, temperatures can be 1000–1500 K, which can cause pyrolytic degradation of PFASs. Volatile compounds degrade inside the bubbles, while many compounds present in the bulk solution can be oxidized by hydroxyl radicals [15–17]. Rates of sono-chemical degradation depend on properties of PFASs, including hydrophobicity, surface tension, surface excess properties, and volatility. Other factors that contribute to degradation are frequency of operation, intensity of irradiation and geometry of the sono-chemical reactor [18–20]. Results of several investigations have demonstrated that sono-chemical degradation of PFASs is effective for reducing lengths of fluorocarbon chains and decreasing concentrations of PFASs from initial concentrations of mM to nM. However, few studies have considered the sono-chemical degradation of AFFFs [6]. These studies have been performed using small-scale reactors (up to a few liters). Due to issues of scalability, studies conducted using large-scale sono-chemical reactors have been very limited.

There are several factors related to the design of large-scale sono-chemical reactors. Designs vary in numbers and locations of transducers, frequency of operation, geometries of reactors, power dissipation per unit volume and cavitation yield. The efficiency of sono-chemical reactors depends on optimization of these parameters [21]. Most of the work reported on mapping of cavitation activity has been conducted using measurements by hydrophones or liberation of iodine at various locations in reactors [22]. During a pilot-scale study, in which a sono-chemical reactor was used to degrade dichloromethane, trichloromethane and the dye methyl orange, rates of degradation were four-fold faster than those during laboratory-scale studies. Analyses of chlorine and the dye methyl orange, rates of degradation were four-fold faster than those during laboratory-scale studies. Analyses of chlorine and the dye methyl orange, rates of degradation were four-fold faster than those during laboratory-scale studies.

2. Experimental section

2.1. Materials

Samples of AFFFs were provided by the Davis-Monthan Air Force Base in Tucson (Arizona, USA). AFFFs were manufactured by 3M (St. Paul, Minnesota, USA) or ANSUL (Marinetts, Wisconsin, USA). Concentrations of total organic fluoride (TOF) in undiluted samples were 92.8 mg/L for 3M-AFFF and 47.9 mg/L for ANSUL-AFFF [16]. Samples were diluted using ultrapure water obtained using a MilliQPlus IV system (18 MΩ-cm). Hydrochloric acid, sodium hydroxide, total ionic strength adjustment buffer (TISAB – II), sodium fluoride, sodium sulfate, and potassium hydrogen phthalate were purchased from Fisher Scientific Inc. (Hampton, NH, USA). Nitrogen (N) (ultrapure) and compressed dry air was provided by Micro/Nano Fabrication Center (The University of Arizona, Tucson, USA). Compressed argon was supplied by Cryogenics and Gas Facility (The University of Arizona). Authentic standards of PFAS, mass labeled PFAS and chemicals required for high performance liquid chromatography–mass spectrometry (HPLC/MS) and combustion ion chromatography (CIC) analysis were provided by the Toxicology Center, University of Saskatchewan, Saskatoon, SK, Canada.

2.2. Sono-chemical reactor

The multi-transducer sono-chemical reactor, made of stainless steel (SS 316), was fabricated by PCT System Inc. (Fremont, CA, USA). Total power supplied to transducers was 12,000 W (~8 W/cm²). The reactor was provided with a cooling system for extracting heat generated during acoustic sonication of aqueous solutions and for maintaining desired temperatures in the reactor. A Re-circulating chiller (process fluid temperature range: 5–35 °C, reservoir volume: 2L, temperature stability: ± 0.1 °C) provided by ThermoFisher Scientific (Hampton, NH, USA) was used for cooling solutions in the reactor. Transducers and electronic circuits were cooled by use of a continuous supply of nitrogen (5–10 psi). A schematic of the reactor including locations of transducers is shown in Fig. 1a and b. Dimensions of the reactor are 20.9 × 26.0 × 175.3 cm, and working reaction volume is 91 L. The calorimetric efficiency (power dissipated in a reaction volume to actual power supplied to the reactor) of the reactor was 24.5%. Three sampling ports were present to check the concentrations of solutions at various locations. The reactor was provided with three pumps Pp, Pn, and Pf, used for draining, and filling the reactor and recirculation of liquid in the reactor, respectively. Pumps were operated using clean, dry air (60–80 psi) supplied to the reactor. Pump Pp was in the ‘on’ mode when the reactor was in the operational mode to maintain a uniform concentration of species in the reactor. There was a safety interlock mechanism in the reactor in case of failure.

2.3. Experimental methodology

Diluted aqueous solutions of AFFF were prepared using ultrapure deionized water. The pH of the solutions was adjusted by use of 1 M HCl or 1 M NaOH, as needed. The reactor was first filled with a diluted AFFF aqueous solution, which was saturated with argon gas by bubbling the solution with the gas for 30 min before the experiment and maintaining a blanket of this gas during the experiment. Degradation of per-
fluorochemicals is directly proportional to maximum temperature attained during collapse of bubble formed during cavitation [31]. Maximum temperature in collapsing bubbles was calculated (Eq. (1)).

$$T_{\text{max}} = T_{\text{in}} \frac{P_{\text{in}}(y-1)}{P_{\text{in}}}.$$

where: T_{in} and P_{in} are initial temperature and pressure in bubbles at the end of expansion, respectively. P_{in} is the acoustic pressure and y is the specific heat ratio of gas inside bubbles. Argon has a higher specific heat ratio as compared to other gases such as oxygen, nitrogen, and air [32], which results in higher temperatures inside cavitating bubbles containing Ar. Samples from port – II (SP-II) (see Fig. 1a) were collected to monitor the progress of degradation.

2.4. Analysis

Total organic fluorine (TOF) and concentrations of PFASs in samples was measured by use of CIC and HPLC/MS, respectively. Methods used for measurement of TOF and PFASs have been reported previously [23]. Procedures for measurements of concentrations of F^- and SO_4^{2-} ion released, and TOC have also been reported previously [15,16].

3. Results and discussion

AFFFs used consisted of PFASs, hydrocarbons, and water. 3M-AFFF formulation consisted of amphoteric fluoroalkyl amide derivatives (1–5%), perfluoroalkyl sulfonate salts (0.5–1.5%), alkyl sulfate salts (1–5%), triethanolamine (0.5–1.5%), tolyltriazole (0.05%), diethylene glycol butyl ether (20%), water (69–71%), and unknown quantities of residual organic fluorochemicals [24]. The ANSUL-AFFF consisted of hydrocarbon surfactants, fluorosurfactants, inorganic salts, and water. Major hydrocarbons present in AFFF ANSUL are diethylene glycol monobutyl ether, hexylene glycol, and 1-propanol [25]. Treatment of PFASs depends on saturation concentrations of target pollutants in vicinities of bubbles and physiochemical properties of AFFFs [4–6]. Efficiency of sono-chemical degradation of AFFFs depends on acoustic frequency, intensity, and physiochemical properties of organic pollutants. Properties of organic compounds that are related to their degradation potential are the octanol-water partition coefficient (K_{ow}), Henry’s law constant, diffusivity, and solution parameters such as ionic strength and pH [22,26]. Efficiency of the sono-chemical reactor is enhanced by optimization of parameters, such as pH, initial concentration of AFFFs, and acoustic frequency.

3.1. Effect of pH

The pH of solutions affects temperatures reached during collapse of bubbles formed during cavitation, radical yield, reactivity, and consequently kinetics of degradation of AFFFs [3–5]. Treatment of PFASs depends on saturation concentrations of target chemicals in vicinities of bubbles and physiochemical properties of AFFFs [4–6,27]. One advantage of acidic pH is that it facilitates production of hydroxyl radicals (generated via thermal decomposition) that have stronger oxidation potentials ($E^0 = 27.8 V$) at acidic pH than at neutral/basic pH ($E^0 \leq 1.80 V$) which is useful for enhancing sono-chemical degradation [26]. So, degradation of ANSUL-AFFF was investigated at pH values of 6.5, 4.0 and 3.0.

3.1.1. ANSUL-AFFF

Results for concentrations of released F^- and SO_4^{2-} (corrected for background concentrations of sulfate) and TOC during sono-chemical degradation of ANSUL-AFFF (500× dilution) at a dual frequency of 1 MHz and 500 kHz are shown in Fig. 2. When pH was decreased from 6.5 to 4.0, concentrations of F^- increased from 38.9 ± 0.4 to 55.6 ± 0.3 µM. When pH was further decreased to 3.0, concentrations of F^- were marginally increased after 13 h. Release of F^- increased linearly with time. Concentrations of released SO_4^{2-} increased from 15.6 ± 0.5 to 28.9 ± 0.3 µM, when the pH was decreased from 6.5 to 4.0, and a further decrease in pH to 3.0 resulted in a decrease of amounts of SO_4^{2-} released to 21.5 ± 0.6 µM. Maximum concentration of SO_4^{2-} was observed after 2 h sonication and further increase with time was marginal. Concentrations of SO_4^{2-} released from ANSUL-AFFF at pH 4 were 20.7 ± 0.2 and 28.9 ± 0.3 µM after 2 and 13 h, respectively. Proportions of TOC removed were 42.3 ± 1.3, 39.3 ± 1.1 and 39.6 ± 1.6 µM for pH 6.5, 4.0, and 3.0, respectively. Most of the removal of TOC, which was marginal, was observed in the first 2 hrs. Based on removal of F^-, SO_4^{2-} and TOC, reducing pH to 3.0 did not result in a significant increase in release/removal of ions or TOC. Thus, pH 4.0 was determined to represent the optimum pH for further investigations.

Rates of sono-chemical degradation of PFOS and PFOA at 358 kHz were inversely proportional to pH between 11 and 4 and did not change further when pH was decreased from 4.0 to 3.0 [20]. The authors reported first-order rate for sonolysis of groundwater at pH 4.0 for PFOS with rate constant values of 0.0094/min and 0.021/min for PFOS [20].
3.2. Effect of dilution

Defluorination of AFFFs depends on the physicochemical properties of chemicals present in AFFFs [28,29]. Efficiency of removal of F^- for the process depends on the concentration of fluorinated compounds in the vicinity of bubbles [28,29]. Therefore, investigation of dilution of PFAS is crucial for enhancing defluorination of AFFF.

3.2.1. AFFF ANSUL

Effects of $900 \times$, $500 \times$, $100 \times$ and $25 \times$ dilution on sono-chemical degradation of PFAS (ANSUL-AFFF) was examined in experiments conducted at an initial pH of 4.0 with sonication by dual frequency operation of 1 MHz + 500 kHz. Concentrations of F^- and SO_4^{2-} released and removal of TOC as a function of time indicate that removals of F^- were inversely proportional to dilution from $900 \times$ to $25 \times$ (Fig. 3). Marginal increases of release of F^- were observed with less dilution from $500 \times$ to $25 \times$. Concentrations of F^- released at the end of 780 min were 27.6 ± 0.5, 55.6 ± 0.3, 60.9 ± 0.2, and $58.6 \pm 0.6 \mu M$ for dilutions of $900 \times$, $500 \times$, $100 \times$ and $25 \times$, respectively. Similar trends were observed for releases of SO_4^{2-}. Concentration of SO_4^{2-} released were inversely proportional to dilution from $900 \times$ to $100 \times$. A further decrease in dilution resulted in a decrease in SO_4^{2-} concentration. Maximum concentrations of SO_4^{2-} released after 13 h were 16.6 ± 0.1, 28.9 ± 0.3, 170.2 ± 2.5, and $127.4 \pm 2.6 \mu M$ for dilutions of $900 \times$, $500 \times$, $100 \times$ and $25 \times$, respectively. Rates of release of SO_4^{2-} were greater in the time scale of 0–2 h, after which further sonication resulted in only marginal additional release of SO_4^{2-}. Percentage of TOC removed decreased initially with a reduction in dilution from $900 \times$ to $500 \times$ and decreased proportionally with dilution from $500 \times$ to $25 \times$. Percentages of TOC removed after 780 min was 45.6 ± 1.2, 39.3 ± 1.1, 39.8 ± 1.8 and 39.8 ± 1.7 for dilutions of $900 \times$, $500 \times$, $100 \times$ and $25 \times$, respectively. However, the mass of TOC was inversely proportional to dilution from $900 \times$ to $25 \times$.

Fig. 2. Effect of solution pH on the sonochemical degradation of AFFF ANSUL (dilution: $500 \times$, dual frequency operation of 1 MHz + 500 kHz). (A) Concentration of fluoride released, µM. (B) Corrected concentration of sulfate released, µM. (C) % removal of TOC.

Fig. 3. Effect of dilution on the sonochemical degradation of AFFF ANSUL (pH 4, dual frequency operation of 1 MHz + 500 kHz). (A) Concentration of fluoride released, µM. (B) Corrected concentration of sulfate released, µM. (C) Percentage removal of TOC.
Concentration of TOC removed were 770 ± 9, 1430 ± 16, 16971 ± 306 and 41502 ± 706 µM for dilutions of 900×, 500×, 100× and 25×, respectively.

3.2.2. 3M AFFF

At an initial pH of 4, effects of dilution of 500×, 100×, 25× and 10× on the sono-chemical degradation of 3M-AFFF under dual frequency operation using 500 kHz and 1 MHz were examined. Concentrations of F⁻ and SO₄²⁻ released and removal of TOC, as a function of time indicate that release of F⁻ was inversely proportional to dilution from 500× to 10× (Fig. 4). Concentrations of F⁻ released after 13 h were 19.9 ± 0.7, 94.2 ± 1.6, 217.1 ± 2.4, and 534.2 ± 4.5 µM for dilutions of 500×, 100×, 25× and 10×, respectively. Maximum amounts of SO₄²⁻ released at the end of 780 min were 19.3 ± 0.8, 140.9 ± 5.5, 130.9 ± 3.4 and 115.3 ± 2.9 µM for dilutions of 500×, 100×, 25× and 10×, respectively. Percentage removals of TOC were inversely proportional to dilution from 500× to 10×. Maximum removal of TOC after 13 h were 33.5 ± 1.7, 24.9 ± 0.9, 18.1 ± 0.6 and 10.1 ± 0.4 for dilutions of 500×, 100×, 25× and 10×, respectively. During sono-chemical degradation of AFFFs, C–S bonds are cleaved, which results in loss of the ionic head group (Reactions (1) and (2)). Released SO₃ or SO₃F⁻ hydrolyze immediately to yield SO₄²⁻. Degradation of intermediate fluorochemicals occurs via bond cleavage to yield two fluoro-alkyl radicals (R₁F, R₂F) [6]. The resulting electrophilic fluoro-chemicals then react with a hydrocarbon species (R–H) to produce smaller non-radical fluoro-chemical products (Reactions (3) and (4)) [6]. Hydrocarbons present in AFFFs degrade via hydroxyl radicals.

\[
\text{CF}_2(\text{CF}_2)_2\text{SO}^\cdot \xrightarrow{\text{OH}^-} \text{CF}_2(\text{CF}_2)_2\text{CF}=\text{CF}_3 + \text{SO}_3\text{F}^- \quad (R.1) \\
\text{CF}_2(\text{CF}_2)_2\text{SO}^\cdot + \text{H}^+ \xrightarrow{\text{OH}^-} \text{CF}_2(\text{CF}_2)_2\text{CF} = \text{H} + \text{SO}_3 \quad (R.2) \\
\text{CF}_2(\text{CF}_2)_2\text{CF} = \text{H} \xrightarrow{\text{OH}^-} \text{R}_1\text{F}^+ + \text{R}_2\text{F}^\cdot \quad (R.3) \\
\text{R}_1\text{F}^+ + \text{R}_2\text{F}^\cdot \xrightarrow{\text{H}^+} \text{R}_1\text{F} + \text{R}_2\text{F} \quad (R.4)
\]

Concentrations of F⁻ and SO₄²⁻ released were greater for 3M-AFFF compared to ANSUL-AFFF. This result might be due to the greater concentrations of long-chain PFAS and alkyl SO₄²⁻ present in 3M-AFFF [24,25]. Defluorination of ANSUL- and 3M-AFFF can be explained based on properties of PFASs and non-fluorinated compounds (hydrocarbon) present in the AFFFs [21,29,30]. Hydrophobic compounds with lesser pKa values are attracted towards the bubble cavity, and compounds with greater Henry’s constant (volatility) occupy the bubble cavity. Compounds that remain in bulk solution (hydrocarbons) might be susceptible to degradation via hydroxyl radicals formed by the collapse of cavities and degradation rate is greater for the compounds in close proximity of bubbles [28,29]. During sonolysis, most of the PFAS and alkyl-SO₄²⁻ present in the AFFFs degrade via pyrolysis due to their greater hydrophobicity and lesser pKa values. Properties of hydrocarbons present in ANSUL- and 3M-AFFF (Table S1, Supplementary Data section) indicate that hydrocarbons present in ANSUL-AFFF have positive Kow coefficients (except triethanolamine) or tend to occupy near regions in vicinities of bubbles formed during cavitation, experience lesser forces of attraction between negatively charged bubbles and dissociated ions of these compounds. Henry’s constant represents volatility of compounds in aqueous solution. Compounds with greater Henry’s constants tend to be present inside bubbles and are pyrolyzed under higher temperature and pressure [20,28]. Compared to other compounds present in ANSUL-AFFF, triethanolamine has a high Henry’s constant. Compounds such as diethylene glycol butyl ether and tolyltriazole with lesser hydrophobicity and pKa values remain in bulk solution or near the bubbles and might be degraded by reaction with hydroxyl radicals [29]. Triethanolamine can be degraded partially by hydroxyl radical attack and partially due to the high temperature and pressure conditions produced inside bubbles. Hydrocarbon compounds present in 3M-AFFFF remain in the hydrophilic form and stay in bulk of solution due to their lesser Kow coefficients and greater pKa values [19,29]. Results reported here, are consistent with previously reported results (1 MHz frequency and power 250 W) where kinetic rate constants for defluorination increased from 1.5 ± 0.1 to 2.1 ± 0.2 µM/min, and rates of degradation of TOC in 3M-AFFF remained constant at 21.8 ± 8.0 µM/min with increasing concentrations of PFAS from 0.8 to 3.7 mM. In the same study, rates of defluorination determined for ANSUL-AFFF increased from 2.2 ± 0.2 to 5.6 ± 0.4 µM and rate of degradation of TOC increased from 7.9 ± 0.2 to 14.8 ± 0.9 µM when dilution went from 900× to 200× [16]. A study investigating sono-chemical degradation of PFOS, an important component in some AFFFs,

![Fig. 4. Effect of dilution on the sonochemical degradation of AFFF 3M (pH 4, dual frequency operation of 1 MHz + 500 kHz). (A) Concentration of fluoride ion released, µM. (B) Corrected concentration of sulfate ion released, µM. (C) Percentage removal of TOC.](image-url)
observed that defluorination rate constants for dilutions of 50,000× (1460 × 10⁻³ M), 5000× (1.46 M), 500× (14.6 M) and 250× (29.2 M) were 0.34 ppb/min, 13.75/min, –1.0/min and 0.010/min, respectively. It was proposed that different kinetic rate equations should be used for various dilution ratios [6]. Langmuir-type mechanism, which occurs predominantly at bubble-water interfaces, was shown to exist under the experimental conditions used [32].

3.3. Effect of frequency

There are several advantages of using a combination of acoustic frequencies for degradation of pollutants, including enhanced distribution of cavitation activity and higher degradation rates [12]. However, selection of a combination of frequencies depends on temperature and pressure generated during collapse of cavities, which is required for degradation of pollutants [13,14]. Investigation of a combination of frequencies is essential for enhancing defluorination rate.

Effect of a single (1 MHz) versus dual frequency (1 MHz and 500 kHz) on degradation of 3M- and ANSUL-AFFF (dilution factor: 25×, pH: 4.0) was studied (Figs. 5 and 6). Total power requirement for single operation was 9900 W, but 11,100 W for dual frequency (500 kHz and 1 MHz). Concentration of F⁻ released from degradation of ANSUL-AFFF was 58.6 ± 0.6 (single frequency) and 34.4 ± 0.4 M (dual frequencies), while for 3M-AFFF it was 142.6 ± 1.5 (single frequency) and 217.1 ± 2.4 M (dual frequencies) in 780 min. Corrected concentrations of SO₄²⁻ released during degradation of ANSUL-AFFF were 173.8 ± 3.5 M (single frequency) and 127.4 ± 2.6 M (dual frequency), while for 3M-AFFF it was 200.1 ± 3.1 (single frequency) and 130.9 ± 3.4 M (dual frequency) in 780 min (Figs. 5b and 6b). Removal of TOC from ANSUL-AFFF by use of a single frequency was 41.9 ± 2.1%, while removal from 3M-AFFF was 14.9 ± 0.2%. When a dual frequency was applied removal of TOC from ANSUL-AFFF was 41.9 ± 2.1%, while removal from 3M-AFFF was 18.1 ± 0.6% during 780 min sonications (Figs. 5c and 6c). Concentration of TOC removed from ANSUL-AFFF and 3M-AFFF during sonications with a single frequency was 18.1 ± 0.6% during 780 min sonications (Figs. 5c and 6c). Concentration of TOC removed from ANSUL-AFFF and 3M-AFFF during sonications with a single frequency was 58.6 ± 0.6 (single frequency) and 34.4 ± 0.4 M (dual frequency), respectively. These results indicate that concentrations of F⁻ released from degradation of pollutants including enhanced defluorination rate.

Concentration of F⁻ ion released are due to interfacial phenomena at the gas-liquid interface and depends on resultant time varying pressure (Pᵣ) and given (Eq. (2)) [14]:

\[R = P₀ - Pₐ \sin(2\pi fₐ t) - Pₙ \sin(2\pi fₙ t + \varnothing) \]

(2)

where \(Pₐ \) and \(Pₙ \) are pressure amplitudes of waves with frequencies \(fₐ \) and \(fₙ \) respectively, \(\varnothing \) is the phase difference between waves and \(t \) is time for pressure varying field. Pressure amplitude (\(Pₐ \) and \(Pₙ \)) is related to intensity of ultrasonic field (I), density of medium (\(\rho \)) and speed of sound in the cavitating medium (c) and given (Eq. (3)), [13]:

\[P₀ = (2\rho c)² \]

(3)

Formation of radicals depends on collapsing conditions of bubbles and heat and mass transfer effects. It occurs at bubble-liquid interfaces and inside bubbles during their collapse [12]. When bubbles expand, water vapor transfer into bubbles and during the collapse phase, vapor partially undergoes condensation and those remaining produce radicals. Formation of radicals is expected to increase with size/radius of bubbles and is calculated from the Rayleigh-Plesset relationship equation [13,14]

\[\frac{d^2 r}{d t^2} + \frac{3}{2} \left(\frac{d r}{d t} \right)^2 + \frac{4\mu}{\rho r} \frac{d r}{d t} = \frac{1}{\rho} (P₀ - Pₐ - Pₙ - \frac{2\pi}{r}) \]

(4)

where \(r \) is the radius of cavitation bubble at any time, \(\mu \) is viscosity of the liquid medium, \(\sigma \) is the surface tension, and \(Pᵣ \) is the pressure inside the bubble. Radii of bubbles are inversely proportional to total resultant pressure (\(Pᵣ \)). \(Pᵣ \) is inversely proportional to intensity of ultrasonic/acoustic fields and frequencies of operation (Eq. (4)). Acoustic field produced from dual frequencies is such that it expands bubbles to greater volumes and compresses bubbles to smaller volumes [31,32]. Expansion of bubbles is mainly driven by the acoustic wave pattern.
produced from synergistic effects of combined frequencies. Synergic effects of dual frequencies enhance cavity size and life span of cavity [14]. Enhancement of cavitational size and span of cavity increases diffusion rates of PFAS and residence time of ions on bubble cavity, which will increase rate of release of fluoride ions [12]. Numbers of cavitational events might also increase when dual frequencies are applied, due to splitting of bubbles and interactions between acoustic waves of different frequencies which reduce bubble coalescence and stable cavitational activity [32]. This might be useful for enhancing pyrolysis and hydroxyl radical activities [13].

Amounts of power utilized for removal of ions and synergistic effects of combined frequencies are expressed as ions released/TOC removed per kJ of energy utilized (Table 1) confirm that the synergistic effect of the combination of frequencies is useful for defluorination and TOC removal. The results confirmed that the synergistic effect of dual frequencies is highly useful for enhancement of cavitational activity in the reactor.

3.4. Degradation products formed during sono-chemical treatment

Bioaccumulation and environmental persistence of PFAS depend on the several factors, including length of the per- or poly-fluorinated carbon chain [2,7]. Compounds with the same length of fluorocarbon chain, but different terminal functional groups, behave differently. According to regulatory criteria of bioaccumulation (1000–5000 L/kg), PFCA with seven or fewer fluorinated carbons and PFAS with six or fewer are not considered to be bioaccumulative [1,2]. PFOS, PFOA, and longer-chain PFAS are persistent compounds, compared to some other shorter chain and fluorotelomer compounds [17,29]. Monitoring the effectiveness of sono-chemical treatment of longer-chain PFAS to shorter-chain compounds is crucial to decrease the recalcitrance of PFAS compounds present in the AFFFs.

Concentration of 16 PFAs (PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFBS, PFPeS, PFHxS, PFOS, PFNS, PFDS, 6:2 FTS and 8:2 FTS) in ANSUL- and 3M AFFF (500× dilution, initial pH = 4) were monitored after 120 and 780 min of sono-chemical treatment (Figs. 7 and 8). Concentrations of PFAS determined were grouped into five categories:

(a) Perfluoroalkyl carboxylates (PFCA) ≤ 6: PFCA with fluorocarbon chain length 6 and below (PFHxA, PFHpA) with carboxylic tail;
(b) PFCA > 6: PFCA with fluorocarbon chain length above 6 (PFOA, PFNA, PFDA, PFUnDA, PFDoDA) with carboxylic tail;
(c) Perfluoroalkyl sulfonates (PFSA) ≤ 6: PFSA with fluorocarbon chain length 6 and below (PFBS, PFPeS PFHxS, PFOS, PFNS, PFDS, 6:2 FTS and 8:2 FTS) with sulfonate tail;
(d) PFSA > 6: PFSA with fluorocarbon chain length above 6 (PFOS, PFNS, PFDS) with sulfonate tail, and
(e) FTS: 6:2 fluorotelomer thioether amino sulfonate and 8:2 fluorotelomer thioether amino sulfonate.

Concentrations of TOF decreased with time for both AFFFs samples, with maximum removal of TOF observed at 120 min. Percentage of removal of TOF were the same for both AFFF samples, but the TOF concentration removal was greater for 3M-AFFF due to the greater concentration of TOF and long-chain PFSA in this AFFF formulation. Concentrations of TOF were the same for both AFFF samples, but the TOF concentration removal was greater for 3M-AFFF due to the greater concentration of TOF and long-chain PFSA in this AFFF formulation. The concentration after 780 min was 105.3 µM (48.4% removal) for ANSUL-AFFF.

3.4.1. AFFF ANSUL

Initial concentration of FTS was greater in ANSUL-AFFF. Concentrations of PFCA > 6 present in ANSUL-AFFF initially increased from 0.52 ± 0.002 to 0.67 ± 0.004 µM then decreased to 0.62 ± 0.003 µM, while the change in concentrations of PFSA > 6 exhibited a similar trend as PFCA > 6 (Fig. 8a). However, the initial increase in concentration for PFSA > 6 was greater compared to PFCA > 6. The concentration of PFSA > 6 present in ANSUL AFFF was 0.56 ± 0.05, 20.64 ± 1.4 and 0.74 ± 0.08 µM to 0, 120 and 780 min, respectively. There was little effect of cavitation observed on PFCA ≤ 6 and increase in concentration was observed from 0.35 ± 0.04 to 0.34 ± 0.06 µM (Fig. 7a). Concentration of FTS was the same for both AFFF samples, but the TOF concentration removal was greater for 3M-AFFF due to the greater concentration of TOF and long-chain PFSA in this AFFF formulation. The concentration after 780 min was 105.3 µM (48.4% removal) for ANSUL-AFFF.
converted into the smaller chain compounds (PFSA ≤ 6) or might be completely mineralized to CO₂. Similar mineralization was observed for PFCA > 6, but the rate of mineralization was greater as compared to PFSA > 6.

3.4.2. 3M-AFFF

3M-AFFF has greater concentrations of PFSA > 6. Sono-chemical degradation of 3M-AFFF in 780 min shows that concentrations of PFSA > 6 decreased by 90.6% from 924.4 ± 46.2 to 87.4 ± 4.3 µM (Fig. 8b). While concentrations of PFCA > 6 decreased by 26.7%, from 7.6 ± 0.4 (0 min) to 5.9 ± 0.3 (120 min) and 5.4 ± 0.3 µM (780 min), (Fig. 8a). Concentrations of shorter-chain PFCA ≤ 6 initially decreased from 4.4 ± 0.2 to 3.9 ± 0.2 µM and then increased to 5.2 ± 0.3 µM while concentrations of PFSA ≤ 6 initially decreased from 67.4 ± 4.4 to 47.5 ± 2.4 µM and then increased to 59.0 ± 3.0 µM (Fig. 8a). There was a small concentration of FTS present in 3M-AFFF, and concentrations of FTS decreased from 0.06 ± 0.003 to 0.03 ± 0.001 µM and then increased to 0.05 ± 0.002 µM (Fig. 8a). Degradation of PFSA > 6

<table>
<thead>
<tr>
<th>Foam</th>
<th>Frequency</th>
<th>Dilution</th>
<th>Released ion concentration (µM)</th>
<th>TOC removal (%)</th>
<th>Cavitational yield × 10⁻⁵ (µM/KJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoride Corrected sulfate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSUL</td>
<td>Dual</td>
<td>900 x</td>
<td>27.6 ± 0.5 16.6 ± 0.1</td>
<td>45.6 ± 1.2</td>
<td>4.7 ± 0.2 3.0 ± 0.2 137.3 ± 4.6</td>
</tr>
<tr>
<td>ANSUL</td>
<td>Dual</td>
<td>500 x</td>
<td>55.6 ± 0.3 28.9 ± 0.3</td>
<td>39.3 ± 1.1</td>
<td>9.2 ± 0.1 3.5 ± 0.3 254.5 ± 8.9</td>
</tr>
<tr>
<td>ANSUL</td>
<td>Dual</td>
<td>100 x</td>
<td>60.9 ± 0.2 170.2 ± 2.5</td>
<td>39.8 ± 1.8</td>
<td>9.9 ± 0.6 30.3 ± 0.9 3.017 ± 12.1</td>
</tr>
<tr>
<td>ANSUL</td>
<td>Dual</td>
<td>25 x</td>
<td>58.6 ± 0.6 127.4 ± 2.6</td>
<td>39.8 ± 1.7</td>
<td>9.6 ± 0.7 22.7 ± 0.8 18534.3 ± 22.5</td>
</tr>
<tr>
<td>ANSUL</td>
<td>Single</td>
<td>25 x</td>
<td>34.4 ± 0.4 173.8 ± 3.5</td>
<td>41.9 ± 2.1</td>
<td>7.4 ± 0.6 37.5 ± 1.4 10253.9 ± 18.1</td>
</tr>
<tr>
<td>3M</td>
<td>Dual</td>
<td>500 x</td>
<td>19.9 ± 0.7 19.3 ± 0.8</td>
<td>33.5 ± 1.7</td>
<td>4.2 ± 0.4 3.4 ± 0.3 89.1 ± 5.8</td>
</tr>
<tr>
<td>3M</td>
<td>Dual</td>
<td>100 x</td>
<td>94.2 ± 1.6 140.9 ± 5.5</td>
<td>24.9 ± 0.9</td>
<td>16.8 ± 1.2 25.1 ± 1.5 130.0 ± 7.8</td>
</tr>
<tr>
<td>3M</td>
<td>Dual</td>
<td>25 x</td>
<td>217.1 ± 2.4 130.9 ± 3.4</td>
<td>18.1 ± 0.6</td>
<td>39.9 ± 1.6 23.3 ± 1.7 1080.9 ± 12.4</td>
</tr>
<tr>
<td>3M</td>
<td>Dual</td>
<td>10 x</td>
<td>534.2 ± 4.5 115.3 ± 2.9</td>
<td>10.1 ± 0.4</td>
<td>92.1 ± 2.8 20.5 ± 1.8 1816.5 ± 18.6</td>
</tr>
<tr>
<td>3M</td>
<td>Single</td>
<td>25 x</td>
<td>142.6 ± 1.5 200.1 ± 3.1</td>
<td>14.9 ± 0.2</td>
<td>31.9 ± 0.3 43.2 ± 2.4 1053.0 ± 8.2</td>
</tr>
</tbody>
</table>

Fig. 7. Concentrations of PFAS as a function of treatment time (dilution: 500 x, pH 4, dual frequency operation of 1 MHz + 500 kHz) during the degradation of AFFF ANSUL. (A) (△) PFCA ≤ 6; (□□) PFCA > 6; (○) FTS. (B) (△) PFSA ≤ 6; (▲) PFSA > 6.

Fig. 8. Concentration of PFAS as a function of treatment time during the degradation of AFFF 3M (dilution: 500 x, pH 4, dual frequency operation of 1 MHz + 500 kHz). (A) (△) PFCA ≤ 6; (□□) PFCA > 6; (○) FTS. (B) (△) PFSA ≤ 6; (▲) PFSA > 6.
3.5. AFFF defluorination kinetics

Rate of degradation of fluorinated compounds present in AFFF is given (Eq. (5)) [16]

$$\frac{d[F^\text{-}]}{dt} = r_{\text{max}} \cdot \theta$$

(5)

where: θ is a function of the initial TOF concentration and sonochemical partitioning coefficient, K_s and calculated by use of Eq. (6).

$$\theta = \frac{K_s \cdot [TOF]}{1 + K_s \cdot [TOF]}$$

(6)

Substituting Eq. (6) into Eq. (5) results in Eq. (7).

$$\frac{d[F^\text{-}]}{dt} = r_{\text{max}} \cdot \frac{K_s \cdot [TOF]}{1 + K_s \cdot [TOF]}$$

(7)

Defluorination of AFFF depends on kinetic parameters (k_{3M}) of defluorination for 3M-AFFF were $27.7 \times 10^{-3} \text{mM/min}$ ($R^2 = 0.977$, 500×), $76.9 \times 10^{-3} \text{mM/min}$ ($R^2 = 0.999$, 100×), 96.7 $\times 10^{-3} \text{mM/min}$ ($R^2 = 0.977$, 25×), whereas those for ANSUL-AFFF (K_{ANSUL}) were $65.1 \times 10^{-3} \text{mM/min}$ ($R^2 = 0.975$, 500×), $67.9 \times 10^{-3} \text{mM/min}$ ($R^2 = 0.968$, 100×), $60.6 \times 10^{-3} \text{mM/min}$ ($R^2 = 0.975$, 25×). Kinetic parameters were calculated by inverting Eq. (7). Defluorination rate for 3M-AFFF was less than that for ANSUL-AFFF for 500× dilution and increased for 100× and 25× dilution. Rate of defluorination for 3M-AFFF was 0.4, 1.1 and 1.6 times the defluorination rate for ANSUL-AFFF for 500×, 100×, and 25× dilutions, respectively. The maximum rate of defluorination for 3M-AFFF (r_{max}; $1.31 \times 10^{-3} \text{mM F}^\text{-}/\text{min}$) was 1.8 times ($r_{\text{max}}$; $7.41 \times 10^{-2} \text{mM F}^\text{-}/\text{min}$) that of ANSUL-AFFF, whereas the TOF concentration for 3M-AFFF was twice that for ANSUL-AFFF. The K_s values for 3M- and ANSUL-AFFF were 6837 and 548/µM, respectively. Sonochemical (1 MHz, power density: 8 W/cm² and volume: 200 mL) defluorination of 3M- and ANSUL-AFFF observed r_{max} for 3M and ANSUL-AFFF as 2.3 and 12.3 mM F^-/min, respectively and K_s as 2397 and 273/M for ANSUL- and 3M-AFFF, respectively [16].

3.6. Energy consumption

Energy required for 500× dilution (initial concentration of PFAS for ANSUL-AFFF: $29.6 \pm 0.05 \text{mg/L}$; 3M: $27.4 \pm 0.04 \text{mg/L}$; pH of solution 4) for 99% of removal of the initial concentration of PFAS is $7.3 \pm 0.02 \text{kJ/L}$ or $6.9 \pm 0.03 \text{kJ/L}$ for ANSUL-AFFF and 3M-AFFF, respectively (Table 2). Costs of energy required per L of ANSUL-AFFF and 3M-AFFF are 0.015 ± 0.0001 and 0.019 ± 0.0002, respectively.

4. Conclusions

Detailed studies focusing on degradation of PFAS present in commercial AFFFs produced by ANSUL or 3M using a sono-chemical reactor confirmed the applicability of treatment for destruction of PFAS at industrial scale of operations. Concentrations of F^- released were inversely proportional to pH and dilution ratio of PFAS. Concentration of F^- released were greater for 3M-AFFF. The total amount of TOC of both AFFFs removed increased with the initial concentration of AFFFs, and it was greater for ANSUL-AFFF as compared to 3M-AFFF. The sono-chemical treatment was very effective at reducing the length of fluorocarbon chains. Estimated costs of energy for treating solutions at 500× dilution were 0.015 and 0.019 per liter for ANSUL- and 3M-AFFFs, respectively. Our results confirm that the sono-chemical reactor design developed in the present work is useful for degradation of AFFFs.

Acknowledgements

Authors are grateful to Air Force Civil Engineering Center, under the project number FA8903-13-C-0011, for the providing financial support for this project. The research was supported by a Discovery Grant from the Natural Science and Engineering Research Council of Canada (Project # 326415-07) and a grant from the Western Economic Diversification Canada (Project # 6578, 6807 and 00012711). The authors wish to acknowledge the support of an instrumentation grant from the Canada Foundation for Infrastructure. Prof. Giesy was supported under the Canada Research Chair program, the 2012 High Level Foreign Experts’ (#GDT20143200016) program, funded by the State Administration of Foreign Experts Affairs, the P.R. China to Nanjing University and the Einstein Professor Program of the Chinese Academy of Sciences and a Distinguished Visiting Professorship in the School of Biological Sciences of the University of Hong Kong.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ultsonch.2018.02.014.

References

Supplementary Information

Sono-chemical treatment of per- and poly-fluoroalkyl compounds in aqueous film-forming foams using a large-scale multi-transducer dual-frequency based acoustic reactor

Vithal L. Golea,d, Reyes Sierra-Alvarezb, Hui Pengc, John P. Giesyc, Pierre Deymiera, and Manish Keswania#

aDepartment of Materials Science and Engineering, The University of Arizona
P.O. Box 210012, Tucson, Arizona, USA

bDepartment of Chemical and Environmental Engineering, The University of Arizona
P.O. Box 210011, Tucson, Arizona, USA

cToxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada

dDepartment of Chemical Engineering, AISSMS College of Engineering, Kennedy Road
Pune 411 001, Maharashtra, India

#Corresponding author
Department of Material Science and Engineering, The University of Arizona
P.O. Box 210012, Tucson, Arizona, USA
Tel.: +1-520-270-4361, Fax: +1-520-621-8059
Email: manishk@email.arizona.edu
<table>
<thead>
<tr>
<th>Compound</th>
<th>pKa</th>
<th>Henry constant, atm m^3/lit</th>
<th>Octanol-water partition coefficient</th>
<th>Solubility in water</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSUL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>7.8</td>
<td>3.38 x 10^{-19}</td>
<td>-1.59</td>
<td>Highly soluble</td>
<td>[1]</td>
</tr>
<tr>
<td>tolyl triazole</td>
<td>8.2</td>
<td>NA</td>
<td>2.10</td>
<td>20 g/l</td>
<td>[2-3]</td>
</tr>
<tr>
<td>diethylene glycol</td>
<td>14.8</td>
<td>3.3 x 10^{-7}</td>
<td>1.90</td>
<td>< 1mg/ml</td>
<td>[4-5]</td>
</tr>
<tr>
<td>butyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alkyl sulfate salts</td>
<td>-1.5</td>
<td>3.38-4.42</td>
<td>1.6-3.8</td>
<td>0.012 mg/l</td>
<td>[6-7]</td>
</tr>
<tr>
<td>3M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diethylene glycol</td>
<td>3.5</td>
<td>2.08 x 10^{-8}</td>
<td>0.81</td>
<td>Miscible</td>
<td>[8-9]</td>
</tr>
<tr>
<td>monobutyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hexylene glycol</td>
<td>13.47</td>
<td>3.40 x 10^{-7}</td>
<td>0.58</td>
<td>Highly miscible</td>
<td>[10-11]</td>
</tr>
<tr>
<td>1-propanol</td>
<td>16.1</td>
<td>7.41 x 10^{-6}</td>
<td>0.30</td>
<td>Highly miscible</td>
<td>[12-13]</td>
</tr>
</tbody>
</table>
References