Effects of lateral hydrological processes on photosynthesis and evapotranspiration in a boreal ecosystem

Ajit Govind,1,2* Jing Ming Chen,3 Jeffery McDonnell,3 Jyothi Kumari1 and Oliver Sonnentag4

1 Unité de Recherche en Ecologie Fonctionnelle et Physique de l’Environnement (EPHYSE), INRA, Villenave d’Ornon, France
2 Department of Geography and Program in Planning, University of Toronto, ON, Canada
3 Department of Forest Engineering, Oregon State University, 97331, OR, USA
4 Department of Organismic & Evolutionary Biology, Harvard University, 02138, MA, USA

ABSTRACT

Landscape-scale hydrological processes can greatly alter the local-scale water balance and many ecological processes linked to it. We hypothesized that in humid forest ecosystems, topographically driven lateral subsurface flow (SSF) has significant influence on ecophysiological processes such as gross primary productivity (GPP) and evapotranspiration (ET). To investigate how simplified hydrological conceptualizations influence the simulated ET and GPP in space and time, we conducted a numerical experiment using a spatially explicit hydroecological model, BEPS-TerrainLab V2.0. We constructed three modelling scenarios: (1) Explicit, where a realistic calculation of SSF was employed considering topographic controls, (2) Implicit, where the SSF calculations were based on a bucket-modelling approach and (3) NoFlow, where the SSF was turned-off in the model.

Statistical analyses of model outputs showed considerable differences among the three scenarios for the simulated ET and GPP in space and time. The NoFlow scenario generally underestimated GPP and ET, while the Implicit scenario overestimated them relative to the Explicit scenario, both in time and space. GPP was more sensitive to SSF than ET because of the presence of unique compensatory mechanisms associated with the subcomponents of the total ET. The key mechanisms controlling GPP and ET were manifested through nonlinear changes in stomatal conductance, unique contributions from GPP and ET subcomponents, alterations in rhizosphere wetting patterns and their impacts on upscauling mechanisms and variability in nitrogen dynamics (for GPP). Feedback and interactive relationships between hydrological and ecophysiological processes also exacerbated the biases. Thus, we conclude that ecological models that have simplified hydrological representations could have significant errors in the estimation of GPP and ET. Copyright © 2010 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.

KEY WORDS spatially explicit hydroecological modelling; hydrological conceptualizations; ecophysiological and hydrological coupling; boreal ecosystems; gross primary productivity; evapotranspiration

Received 10 December 2009; Accepted 6 May 2010

INTRODUCTION

Much of the uncertainty in quantifying how changes in climate will alter ecophysiological and biogeochemical processes in different ecosystems is linked to our rudimentary understanding of landscape-scale hydrological processes and how it influences biogeochemical processes (Gedney et al., 2006; Zimov et al., 2006). Ecophysiological and biogeochemical processes vary in space and time due to the heterogeneities in the local-scale hydrothermal conditions. Consequently, dynamics of the soil-plant-atmospheric-continuum (SPAC) of mass and energy are highly nonlinear and dominated by thresholds and feedbacks (Joos et al., 2001; Porporato et al., 2003; Daly et al., 2004; Sitch et al., 2005; Manzoni and Porporato, 2007). In humid landscapes, much of the variation in soil water is driven by lateral water fluxes (McDonnell et al., 2007; Rodríguez-Iturbe et al., 2007). While ambient soil moisture is the net result of the magnitudes of various components of the water balance, hill-slope hydrological processes that drive lateral flow are often neglected in most of the ecological models (e.g. Running et al., 1994; Potter et al., 2001; Arain et al., 2006; Coops et al., 2007) and in land surface schemes (LSS) that are used within global general circulation models (e.g. Mihailovic et al., 1993; Polcher et al., 1995 Cox et al., 1999). Recently, Morales et al. (2005) has shown that most of the ecosystem models inadequately simulated ecophysiological and biogeochemical processes because of the incompleteness in their representations of hydrological processes.

Hydrological and ecological models differ greatly in their representation of soil-water dynamics (Rodríguez-Iturbe, 2000). While ecological models often ignore or simplify the amount of water that drains laterally across the landscape (Turner et al., 2006; Coops et al., 2007), conventional hydrological models often focus only on lateral water redistribution during and between events and greatly simplify vegetation controls on soil moisture dynamics (Beven et al., 1984; Armstrong and Martz, 2003; Koster et al., 2006; Vazquez and Feyen, 2007).
Most of the one-dimensional ecosystem models (Arora and Boer, 2006; Grant et al., 2006) explicitly simulate key plant and biogeochemical processes but often simulate only vertical hydrological processes without consideration of lateral hydrological processes and redistribution. Even in spatially distributed ecological models that use remotely sensed data, the modelling units (pixels) are one-dimensional representation of the SPAC and hence the lateral hydrological processes are simplified. In these approaches, soil moisture controls are represented as ‘available soil moisture’ (e.g. Liu et al., 1997) or in the form of scalars that represent hydrological controls on vegetation (e.g. Heinsch et al., 2006; Coops et al., 2007).

Indeed, Ju et al. (2006) have noted that almost none of the regional-scale ecological models include the mechanistic redistribution of soil water. We believe that such simplified hydrological representations could contribute to significant errors in the simulated ecophysiological processes such as photosynthesis and evapotranspiration (ET).

Here we examine the effects of lateral hydrological processes on photosynthesis and ET in a boreal ecosystem. High latitude boreal forests play a major role in global climate dynamics (Thompson et al., 1996; Chen et al., 2003). Because the majority of fresh water resources (including ice and snow) are located in high latitudes, these ecosystems play a major role in the global climate dynamics (Thompson et al., 1996; Chen et al., 2003). Our overall goal was to explore how much hydrological detail is required in an ecological model in order to realistically simulate ecophysiological and biogeochemical processes.

We used the spatially explicit model, BEPS-TerrainLab V2.0 model (Govind et al., 2009a), as a framework for a numerical experiment (Weiler and McDonnell, 2004) to explore the hydrological impacts on ecophysiological processes in a boreal ecosystem. We constructed modelling scenarios that differed in the level of complexity with which lateral hydrological processes are conceptualized in conventional ecological models and their performances were evaluated. We focused on the spatio-temporal distribution of the two main ecohydrological indicators: gross primary productivity (GPP) and ET. The objectives of this study were to investigate how hydrological simplifications contribute to biases in the simulated ET and GPP in space and time and to understand the mechanisms that create these biases.

SITE DESCRIPTION

Our numerical experiment focused on a 50 km² boreal watershed that includes the Eastern Old Black Spruce (EOBS) site of the Canadian Carbon Program (CCP), located at 49.69°N and 74.34°W, ~200 km northwest of the Lac St. Jean, Quebec, Canada (Figure 1). This region lies within the humid continental subarctic boreal

Figure 1. Location of the Chibougamau watershed, a humid boreal ecosystem, for which the numerical experiment was conducted.
biome. Since mid-2003, an eddy covariance (EC) tower at EOBS has been making continuous high precision measurements of the fluxes of mass and energy between the landscape and the atmosphere. Details on the flux and meteorological measurements can be found in Bergeron et al. (2007, 2008). Black spruce (Picea mariana) is the dominant species in this boreal ecosystem. Paper birch (Betula papyrifera Marsh.) and aspen (Populus balsamifera L.) can also be found on elevated locations along esker ridges. The soil is predominantly a podsol, covered by an organic layer with an average depth of 26–30 cm. In humid locations where the soil is predominantly ‘organic’, peat can occur as deep as 125 cm (Gliasson et al., 2006).

The total annual precipitation (P) of the study site (30-year trend) is ~950 mm (Environment Canada, 2006), two-thirds of which is approximately comprised of rainfall and one-third snowfall (Bergeron et al., 2007). Approximately 27% of P is partitioned as ET and ~72% of P is partitioned as runoff. The remaining 1% of P alter the storage in the soil, affecting the volumetric soil moisture content (VSMC) and water table depth (WTD).

MATERIALS AND METHODS

BEPS-TerrainLab V2.0 is a spatially explicit model that simulates the hydrological, ecophysiological and biogeochemical processes and the related feedback relationships in a tightly coupled manner. A detailed description of this model can be found in Govind et al. (2009a,b).

Modelling of stomatal conductance

In a spatially explicit modelling approach, a practical method to calculate stomatal conductance (gs) is to use a Jarvis (1976)-like algorithm wherein a species-specific maximum stomatal conductance (gs_{max}) is constrained by a set of factors to return gs. In BEPS-TerrainLab V2.0, gs is calculated by a Jarvis (1976)-like scheme. In order to adequately represent plant–water relations in BEPS-TerrainLab V2.0, it is assumed that a canopy is comprised of physiologically distinct leaf types, based on the variability of resource factors, light and water. A canopy-scale ecophysiological process such as photosynthesis is contributed by physiologically distinct leaf types that have unique gs values. Here, variability in light and soil moisture are considered as factors that govern intra-canopy physiological variability. Other factors such as relative humidity, soil temperature and air temperature also contribute to the dynamics of gs. Scalars (ranging between 0 and 1) representing various environmental factors constrain a land cover-specific maximum stomatal conductance, gs_{max}, to return the gs as shown below:

$$
gs = gs_{\text{max}} \times \left[f_s(F_p) \times f_k(T_a) \times f_c(D_v) \times f_d(\theta_{sw}) \times f_e(T_s) \right]
$$

Here F_p is the photosynthetic photon flux density, T_a the mean air temperature, D_v the vapour pressure deficit, θ_{sw} the VSMC and the functions f_{a-c} are factor-specific functions. Unlike water-limited ecosystems, where plant stress is a direct function of water scarcity, in humid boreal ecosystems, water stress is mostly attributed to soil saturation (flooding). There are many studies that provide evidence that either gs decreases with increasing θ_{sw} beyond the field capacity (Kozlowski, 1984; Else et al., 1996). This may be because of soil saturation-induced plant stress that occurs because of a variety of reasons such as anoxic conditions and production of toxic compounds in the rhizosphere. In order to conceptualize this, in BEPS-TerrainLab V2.0 we use a $f(\theta_{sw})$ which is unique to boreal ecosystems. The method for calculating these scalars can be found in Chen et al. (2005) and Sonnentag et al. (2008). In BEPS-TerrainLab V2.0, a new scalar $f(T_v)$ accounts for the effects of soil temperature on gs. This scalar is robust to capture the plant physiological enhancement during the spring, even though the air temperature remains physiologically suboptimal (Govind et al., 2009a). Finally, the total conductance is calculated by assuming the cuticular conductance (g_{cuticle}) in parallel and boundary layer conductance (g_{boundary}) in series to gs, such that the total conductance for water vapour exchange becomes:

$$
g_{\text{total}} = \frac{g_{\text{boundary}} \times (g_{\text{cuticle}} + gs)}{g_{\text{boundary}} + g_{\text{cuticle}} + gs}
$$

For the moss layer, the surface conductance is calculated using a least squares regression after Williams and Flanagan (1998) and for soil it is calculated as a direct function of VSMC.

Conductance for CO$_2$ transport between the vegetation and the atmosphere is assumed to be 0.0625 times the conductance for H$_2$O.

Modelling ecohydrological processes

ET is calculated as the sum of evaporation and transpiration using the Penman–Monteith (PM) equation and GPP is calculated using the temporally integrated Farquhar model (TIFM) of Chen et al. (1999), for different canopy layers (overstory and understory), moss and soil surface, using surface-specific microclimatic variables and parameters.

Leaf-level processes (GPP and ET) are upscaled to the canopy using fractions of leaf area index (LAI) as weighting terms that correspond to variability in canopy physiological status due to the two main resources, light and water. BEPS-TerrainLab V2.0 employs a modified sunlit-shaded leaf strategy, i.e. the four-leaf approach to spatially upscale leaf-level ecophysiological processes to the canopy scale by assuming that within each light regime there are two states of moisture regimes, i.e. canopy is comprised of four physiologically distinct leaf types based on the differences in light and water status. For example, for overstory canopy transpiration (T_v), firstly, leaf-level ecophysiological processes are calculated using unique gs (for water vapour) and then

Ecohydrol. 4, 394–410 (2011)

DOI: 10.1002/eco
upscaled to the canopy as shown below:

\[T_o = [T_{sun, unsat} L_{A1, over, sun, \mu} + T_{sun, sat} L_{A1, over, sun}(1 - \mu)] \]
\[+ [T_{shade, unsat} L_{A1, over, shade, \mu} + T_{shade, sat} L_{A1, over, shade}(1 - \mu)] \] (3)

where

\[T_{sun, sat} = f_1[R_{sun}, g_{sun, sat}] \]
\[T_{sun, unsat} = f_1[R_{sun}, g_{sun, unsat}] \]
\[T_{shade, sat} = f_1[R_{shade}, g_{shade, sat}] \]
\[T_{shade, unsat} = f_1[R_{shade}, g_{shade, unsat}] \] (4)

The function \(f_1 \) is the PM equation, which uses leaf-specific net radiations \((R_o) \) and \(g_c \) (for \(\text{H}_2\text{O} \)). In this scheme, it is assumed that the rhizosphere wetting patterns proportionately influence the physiological variability of the canopy. This is manifested through the variable \(\mu \) (after Gale and Grigal, 1987), the fraction of roots in the unsaturated zone, and \((1 - \mu)\), the fraction of roots in the saturated zone. The evaporation from the forest floor \((E_{floor}) \) is calculated as the weighted sum of moss evaporation \((E_{moss}) \) and soil evaporation \((E_{soil}) \) which is calculated using the PM equation using surface-specific conductance values.

Similar to transpiration, photosynthesis is spatially upscaled using LAI fractions that correspond to different leaf physiological statuses as shown below:

\[A_o = [A_{sun, sat} L_{A1, sun, \mu} + A_{sun, unsat} L_{A1, sun}(1 - \mu)] +
\[A_{shade, sat} L_{A1, shade, \mu} + A_{shade, unsat} L_{A1, shade}(1 - \mu)] \] (5)

where

\[A_{sun, sat} = f_2[R_{sun}, g_{sun, sat}] \]
\[A_{sun, unsat} = f_2[R_{sun}, g_{sun, unsat}] \]
\[A_{shade, sat} = f_2[R_{shade}, g_{shade, sat}] \]
\[A_{shade, unsat} = f_2[R_{shade}, g_{shade, unsat}] \] (6)

In the Equation (5), \(A_o \) is the overstory canopy’s photosynthesis which has subcomponents that are calculated using different combinations of radiation \((R_o) \) and moisture regimes, based on the function, \(f_2 \), which is the TIFM.

For the understory canopy, however, for both transpiration and photosynthesis, a *quasi-big-leaf approach* is employed as the upsampling strategy, using a canopy conductance \(g_{c, under} \), which is simply calculated as \(g_{under} \times L_{A1, under} \). However, the relative understory contributions from the saturated and unsaturated zones are explicitly considered and are proportionately weighted. The understory transpiration and photosynthesis are expressed as:

\[T_{under} = [T_{under, \mu, under} + T_{under, (1 - \mu, under)}] \] (7)
\[A_{under} = [A_{under, \mu, under} + A_{under, (1 - \mu, under)}] \] (8)

Moss photosynthesis \((A_{moss}) \) is calculated using the function \(f_2 \) but without any spatial upscaling mechanism because it is assumed to be single layered.

Other related processes such as soil heat transfer and hydrothermally controlled soil biogeochemical processes are also considered in BEPS-TerrainLab V2.0. Soil temperature at various depths is calculated by numerically solving the Fourier heat transfer process using the Crank–Nicholson scheme for a six-layered soil profile (one dynamic snow layer and five soil layers). Explicit modelling of soil carbon (C) and nitrogen (N) dynamics as a function of soil water and soil temperature facilitate the detailed modelling of biogeochemical processes.

Water balance of a BEPS-TerrainLab V2.0 modelling unit

Most of the hydrological processes are conceptualized in BEPS-TerrainLab V2.0 by solving a detailed water balance equation that considers lateral water fluxes, saturated zone and unsaturated zone hydrological processes, snow dynamics and canopy hydrological processes, at a daily time step.

The local-scale water balance is conceptualized on a per-pixel basis. The soil is divided into the saturated and unsaturated zones. For a given pixel, the water balance in the unsaturated zone at a daily time step can be expressed as:

\[\Delta W_{unsat} = I - R_{SOLF} + W_{cr} - W_{pe} - T_{u, unsat} - E_{floor} \] (9)

where \(\Delta W_{unsat} \) is the storage change in the unsaturated zone; \(I \) the net precipitation that reaches the soil surface and is composed of throughfall, stemflow and snowmelt; \(R_{SOLF} \) the surface overland flow (SOLF); \(W_{cr} \) the capillary rise from the saturated zone to the unsaturated zone; \(W_{pe} \) the percolation from the unsaturated zone to the saturated zone; \(T_{u, unsat} \) the overstory transpiration (water consumed by roots lying in the unsaturated zone); \(T_{u, sat} \) the understory transpiration (water consumed by roots lying in the unsaturated zone) and \(E_{floor} \) the forest floor evaporation (weighted sum of soil and moss evaporation) and/or the sublimation from the forest floor snow pack.

For a given pixel, in the saturated zone, the water balance at a daily time step is

\[\Delta W_{sat} = W_{pe} - R_{ssf} - T_{o, sat} - T_{u, sat} - W_{cr} \] (10)

where \(\Delta W_{sat} \) is the storage change in the saturated zone; \(R_{ssf} \) the subsurface flow; \(T_{o, sat} \) the overstory transpiration (water consumed by roots lying in the saturated zone); and \(T_{u, unsat} \) the understory transpiration (water consumed by roots lying in the saturated zone).

The net water balance of the pixel as a whole is the sum of the storage change in the unsaturated and the saturated zones, \(\Delta W \), i.e. combining Equations (9) and (10) as shown below:

\[\Delta W = I - R_{SOLF} - R_{ssf} - T_{o, unsat} - T_{o, sat} \]
\[- T_{u, unsat} - T_{u, sat} - E_{floor} \] (11)

Copyright © 2010 John Wiley & Sons, Ltd.

DOI: 10.1002/eco
Datasets used

We used various spatial and meteorological datasets to run the model in order to perform this numerical experiment. These spatial datasets include land cover, LAI, a hydrologically corrected digital elevation model, slope, aspect, soil texture, initial WTD, spatial distributions of the sizes and C:N ratios of the 13 conceptual C-pools in the ecosystem (i.e. 26 maps) and a watershed boundary. All of these spatial datasets had a common spatial resolution of 25 m in the UTM Z-18N projection.

Daily meteorological variables such as the maximum temperature, minimum temperature, dew point temperature, incoming shortwave radiation, wind speed and precipitation (rain or snow) were collected at one point (EOBS tower site) and were assigned to all the pixels in the modelling domain after correcting for the effects of elevation and slope on temperature and solar radiation, respectively. Biophysical and soil hydraulic parameters were assigned in a spatially explicit manner based on the land cover and soil maps, respectively Govind et al. (2009a,b).

In this study for model evaluation, EC measurements of the fluxes of water and C at the EOBS were used. EC datasets were quality controlled, gap filled and partitioned for flux subcomponents by Bergeron et al. (2007) using a standard Fluxnet-Canada algorithm developed by Barr et al. (2004). The CO2 flux data after flux partitioning provided GPP estimates. These datasets were obtained from the Data Information System of the CCP (http://fluxnet.ccrp.ec.gc.ca/). We converted the latent heat flux measurements (W m$^{-2}$) to ET (mm day$^{-1}$) for model evaluation.

Numerical experiments

BEPS-TerrainLab V2.0 has been previously tested for 2 years using measurements of GPP, ET, WTD, VSMC (Govind et al., 2009a), snow depth, soil temperature, total ecosystem respiration and net ecosystem exchange (Govind et al., 2009b). In this study, we used the original model that has explicit hydroecological representation and then compared its simulations to the ones with progressively simpler hydrological conceptualizations to investigate how hydrological representation of lateral flow affects the simulated magnitudes of GPP and ET. Such lateral flows at the watershed scale could be either due to surface or subsurface flows. Infiltration-excess overland flow (Horton, 1933) is a rare phenomenon at the study site due to the very high infiltration capacities. While surface overland flow (SOLF) (Dunne and Black, 1970) sometimes occurs under unusually wet conditions when the WTD is at the soil surface, its appearance is also quite limited. Many field-based studies have shown that in boreal ecosystems, the dominant process for lateral water distribution is the topographically driven subsurface flow (SSF) (Renzetti et al., 1992; Weiler et al., 2005; McEachern et al., 2006), which plays a significant role in regulating the local-scale water balance.

To investigate the differences in the simulated eco-physiological processes due to variations in the conceptualizations of local hydrological regimes, we designed three modelling scenarios (Figure 2, Table I) that differed only in the complexity with which SSF was modelling. All spatial and meteorological datasets, parameter values and initialization procedures were kept the same in all the scenarios as in Govind et al. (2009a), in order to study the ecohydrological interactions due to differences in the hydrological conceptualizations.

1. The Explicit scenario: This scenario includes both forms of lateral water fluxes, i.e. SSF and SOLF as a function of topography, as outlined in Govind et al. (2009a). Here SSF is calculated based on a depth-integrated Darcy’s approach (Wigmosta et al., 1994; Chen et al., 2005) using soil-specific transmissivity schemes. However, unlike most of the hydroecological models where topographic slope is used, the slope of the WTD (hydraulic head), updated on a daily basis, is used to calculate SSF. Considering the critical role of preferential water fluxes in forested ecosystems (Weiler and McDonnell, 2007), a peat-specific transmissivity scheme is used to describe the preferential water fluxes through the peat necromass. The SSF calculated in this manner is exchanged with the neighbouring...
pixels which in turn affects the water balance of the neighbouring pixels and itself. When the WTD reaches the ground surface, water gets ‘ponded’ and is routed laterally as SOLF, which enters the water balance calculation of the neighbouring pixels as input components. This Explicit scenario represents the most detailed form of ecohydrological conceptualization in this experiment. Similar representations can be found in models such as RHESSys (Tague and Band, 2004) and VIC (Liang et al., 1994).

2. The Implicit scenario: In this scenario, the SSF is ‘accounted’ assuming a bucket-modelling scheme without any topographic influence and hence pixel-to-pixel exchange of SSF is absent. Theoretically, when the soil-water potential lies above the field capacity, its energy status is adequate for gravitational flow. Considering this, in the Implicit scenario, it is assumed that on a daily basis, some amount of water is drained as SSF from a given saturated zone depth. This SSF is equivalent to water that should be lost in order to reach a field capacity condition for that saturated zone depth. The remaining amount of water determines the new saturated zone depth and hence the WTD in the next time step. This assumption is currently used directly or indirectly in many of the ecological models that simplify soil hydrological processes. In the Implicit scenario, SSF is calculated as:

\[R_{ssf, implicit} = (\theta_s - \theta_c) \cdot d \]

(12)

where \(R_{ssf, implicit} \) (mm day\(^{-1}\)) is the SSF calculated using the Implicit scenario; \(\theta_s \) the VSMC at saturation (\(\theta_s = \phi \) porosity of the soil); \(\theta_c \) the VSMC at the field capacity and \(d \) the depth of the saturated zone, the difference between the depth of the soil profile and WTD, measured from the ground surface. The SSF calculated in this way is directly removed from a given pixel on a daily basis, thus affecting its water balance without affecting the water balance of the neighbouring pixels. Since there are neither topographic controls nor the effects of neighbouring pixels in this scenario, SSF is greatly simplified and consequently the soil always tends to maintain a water status below the field capacity. It seldom saturates the entire soil profile unless a very heavy precipitation event occurs especially at those locations where the soil storage is very small (e.g. a shallow soil profile). Thus, the probability of getting SOLF is almost negligible in this scenario. This ‘implicit approach’ is commonly used in most of the large-scale ecological models where simplified hydrological representations are adopted (e.g. BEPS, Liu et al., 1997; CASA, Potter et al., 2001; C-Flux, Turner et al., 2006).

3. The NoFlow scenario: This scenario assumes that there is no SSF between the pixels. The infiltrated soil water either evaporates or transpires. However, if the WTD reaches the soil surface, after filling the soil storage, a surface ‘ponding’ of water causes an ‘overflow’ of water, when SOLF is initiated. SOLF enters the water balance calculation of the neighbouring pixels. This type of approach is adopted in some of the LSS that are used within the global circulation models (e.g. Polcher et al., 1995; Shao and Henderson-Sellers, 1996; Cox et al., 1999; Comet et al., 2000). A key point is that in the NoFlow scenario, SOLF occurs only after the entire soil profile is saturated before the ‘overflow’ process occurs.

In summary, the Explicit scenario has topographically driven SSF that is exchanged with neighbouring pixels, the Implicit scenario has SSF implicitly calculated without topography and is not exchanged with the neighbouring pixels in the NoFlow scenario, SSF is fully ignored. In all the three scenarios, there is provision for SOLF pathway, although its occurrence is highly dependent on subsoil hydrological processes. In this article the Implicit and the NoFlow scenarios are collectively referred to as ‘non-explicit’ scenarios.
Statistical analysis

Statistical analyses were performed to investigate the differences in the simulated GPP and ET under different hydrological conceptualizations, in both time and space. Simple linear regressions between various scenario estimates \((y) \) and the measured values \((x) \) were made for GPP and ET. Further, Student’s \(t \)-tests were performed using test-specific hypotheses to ascertain how the slopes of these regressions were statistically different from 1 \((H_0 : \beta_1 = 1; H_1 : \beta_1 \neq 1) \); how the intercept was different from 0 \((H_0 : \beta_0 = 0; H_1 : \beta_0 \neq 0) \) and the significance of the regressions \((H_0 : \beta_1 = 0; H_1 : \beta_1 \neq 0) \) (Montgomery et al., 2001). The level of significance for all the tests was fixed at 0.05. In order to test the statistical variability of the scenario performances in time, we used the daily EC-based measurements taken in 2004 \((n = 365) \) at the EOBS tower footprint \((x) \) and scenario estimates \((y) \) of ET and GPP to construct the linear regressions. Additionally, root mean square error (RMSE) and the Nash–Sutcliffe efficiency (NSE) were also computed. In order to test the scenario performances in space, 400 randomly distributed sampling points (Figure 1) were identified on the modelling domain using a geographical information system-based approach, after Beyer (2004).

A sample size of 400 was adequate to statistically represent a population of size 35,425 pixels at 95% confidence level. The annual values (2004) of the non-explicit \((y) \) and the Explicit \((x) \) GPP and ET estimates simulated at these sampling points \((n = 400) \) were used to construct the linear regressions for model evaluations.

RESULTS

Temporal dynamics of GPP and ET under various hydrological scenarios

The seasonal patterns of the daily GPP and ET simulated under the three scenarios are shown in the Figure 3. In the model, total GPP is comprised of overstory GPP, understory GPP and moss GPP. In general, the Implicit scenario overestimated the daily GPP, whereas the NoFlow scenario underestimated daily GPP, in comparison to the Explicit scenario and the EC measurements (Figure 3a). The overestimation by the Implicit scenario was highest between the days 150 and 200 coinciding with the period of spring snowmelt and soil-water recharge. All the scenarios showed a consistent reduction in the daily GPP between the days 210 and 240, a dry period in 2004. The decline in daily GPP was smaller and slower in...
from the canopy (moss evaporation) is comprised of overstory transpiration (T_o), understory transpiration (T_under), evaporation of intercepted water from the canopy (E_canopy) and sublimation of snow (S), and the forest floor evaporation (E_floor) comprising of moss evaporation (E_moss) and soil evaporation (E_sol). Unlike GPP, for daily total ET, all the scenarios showed more or less similar magnitudes. In a strict sense, the NoFlow scenario slightly overestimated the daily ET during the spring and in the late summer in comparison to the Explicit scenario. Clearly, the subcomponents of ET (both physical and biological) behaved differently under the three scenarios. Although it can be generalized that the simulated ET under the Implicit scenario is slightly higher than that of the Explicit scenario throughout the year, in the spring the Implicit scenario slightly underestimated ET in comparison to the Explicit scenario.

The slopes of the linear regressions between the scenario-based daily ET estimates (y) and measured ET estimates (x) at the EOBS tower footprint region revealed that on a daily basis the NoFlow scenario slightly underestimated ET, whereas the Explicit and the Implicit scenarios overestimated ET (Table II). Statistically, the slopes of the linear regressions between Explicit ET estimates versus ET measurements (slope = 1.04; p = 0.062) and the NoFlow versus ET measurements (slope = 0.971; p = 0.257) were not significantly different from 1 (EC measurements). However, the slope of the linear regression between Implicit ET estimates versus EC measurements (slope = 1.052; p = 0.041) was significantly different from 1, indicating a tendency of the Implicit scenario for overestimation. The intercepts in all the scenarios were significantly different from 0 (p < 0.001). The RMSE was highest for the NoFlow scenario (0.447 mm day\(^{-1}\)) and lowest for the Explicit scenario (0.365 mm day\(^{-1}\)) with the Implicit scenario having an intermediate level of error (0.418 mm day\(^{-1}\)). The NSE was highest for the Explicit scenario (0.80) and lowest for the NoFlow (0.69) scenario with the Implicit scenario having an intermediate level of NSE (0.73).

The slopes of the linear regressions between various scenario-based GPP estimates (y) and measurement-based GPP estimates (x) revealed that on a daily basis the NoFlow scenario underestimated GPP, whereas the Implicit scenario slightly overestimated GPP relative to the Explicit scenario. Statistically, the slope of the linear regression between Explicit GPP estimates versus GPP measurements (slope = 1.00; p = 0.091) was not significantly different from 1, whereas for NoFlow estimates versus GPP measurements (slope = 0.64; p = 0.001) and the Implicit estimates versus GPP measurements (slope = 1.09; p = 0.001), the slopes were significantly different from 1. The RMSE was highest for the NoFlow scenario (1.06 gC m\(^{-2}\) day\(^{-1}\)) and lowest for the Explicit scenario (0.50 gC m\(^{-2}\) day\(^{-1}\)) with the Implicit scenario having an intermediate level of accuracy (0.930 gC m\(^{-2}\) day\(^{-1}\)). The NSE was highest for the Explicit scenario (0.91) and lowest for the NoFlow (0.58) scenario with the Implicit scenario having an intermediate level of NSE (0.76). These results also implied that GPP was more sensitive than ET to the differences in the conceptualization of lateral hydrological processes.

Variation of ET and GPP subcomponents under hydrological scenarios

Ecosystem ET and GPP have various subcomponents representing vegetation (overstory and understory) and forest floor (soil and moss) contributions. We analysed the relative contributions from these subcomponents for

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Slope (test 1)</th>
<th>Intercept (test 2)</th>
<th>(R^2) (test 3)</th>
<th>RMSE(^d)</th>
<th>NSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET_{Explicit}</td>
<td>1.046 (p = 0.062)</td>
<td>−0.191 (p < 0.001)</td>
<td>0.842 (p < 0.001)</td>
<td>0.365</td>
<td>0.80</td>
</tr>
<tr>
<td>GPP_{Explicit}</td>
<td>1.001 (p = 0.991)</td>
<td>−0.149 (p < 0.001)</td>
<td>0.924 (p < 0.001)</td>
<td>0.500</td>
<td>0.91</td>
</tr>
<tr>
<td>ET_{Implicit}</td>
<td>1.052 (p = 0.041)</td>
<td>−0.186 (p < 0.001)</td>
<td>0.832 (p < 0.001)</td>
<td>0.418</td>
<td>0.73</td>
</tr>
<tr>
<td>GPP_{Implicit}</td>
<td>1.087 (p < 0.001)</td>
<td>−0.173 (p = 0.004)</td>
<td>0.856 (p < 0.001)</td>
<td>0.930</td>
<td>0.76</td>
</tr>
<tr>
<td>ET_{NoFlow}</td>
<td>0.971 (p = 0.257)</td>
<td>−0.18 (p < 0.001)</td>
<td>0.804 (p < 0.001)</td>
<td>0.447</td>
<td>0.69</td>
</tr>
<tr>
<td>GPP_{NoFlow}</td>
<td>0.640 (p = 0.001)</td>
<td>−0.194 (p < 0.001)</td>
<td>0.767 (p < 0.001)</td>
<td>1.060</td>
<td>0.58</td>
</tr>
</tbody>
</table>

The level of significance of all statistical tests was fixed at 0.05.

\(^a\) Test 1 = \(H_0 : \beta_1 = 1\), \(H_1 : \beta_1 \neq 1\).
\(^b\) Test 2 = \(H_0 : \beta_0 = 0\), \(H_1 : \beta_0 \neq 0\).
\(^c\) Test 3 = \(H_0 : \beta_0 = 0, \beta_1 = 0\).

\[RMSE = \sqrt{\frac{\sum_{i=1}^{n}(x - y)^2}{n}} \]
\[NSE = 1 - \frac{\sum_{i=1}^{n}(x - \bar{y})^2}{\sum_{i=1}^{n}(x - \bar{x})^2} \]

\(^d\) RMSE between the measured and simulated ET (mm day\(^{-1}\)) and GPP (gC m\(^{-2}\) day\(^{-1}\)).
the different scenarios at the EOBS tower footprint region for 2004 (Figure 3c and d).

In all scenarios, for ET, evaporation of the water intercepted by the canopy (E_{canopy}) was simulated to be 58 mm, which was 5.5% of the annual precipitation (1053 mm). This component did not vary in any of the scenario because E_{canopy} was not affected by the nature of soil-water partitioning. Overstory transpiration (T_o) showed pronounced differences among scenarios. In the Explicit scenario, T_o was simulated to be 119 mm, in the Implicit scenario it increased to 126 mm and in the NoFlow scenario it decreased to 98 mm. There were also significant differences in the simulated understory transpiration (T_{under}). It was 63 mm in the Explicit scenario, 85 mm in the Implicit scenario and 78 mm in the NoFlow scenario, showing the high sensitivity of T_{under} to soil moisture fluctuations. As opposed to transpiration components, E_{floor} varied quite differently because of the combined effects of E_{soil} and E_{moss}. E_{floor} was highest in the NoFlow scenario (101 mm) and lowest in the Implicit scenario (63 mm). Figure 3d shows the relative magnitudes of these ET subcomponents. Simulations also suggested that transpiration was the major contributor to the total ET followed by E_{floor}.

GPP subcomponents also showed pronounced variations under the three scenarios. The footprint-averaged annual overstory GPP (A_o) was simulated to be 440, 536 and 410 gC m^{-2} year^{-1} under the Explicit, Implicit and the NoFlow scenarios, respectively. The contribution of understory GPP (A_{under}) was 176, 228 and 143 gC m^{-2} year^{-1} for the Explicit, Implicit and the NoFlow scenarios, respectively. There was a striking reduction in the A_{under} in the NoFlow scenario and a drastic increase in the Implicit scenario. Moss GPP (A_{moss}) was simulated to be 10.2 gC m^{-2} year^{-1} (Explicit), 7.7 gC m^{-2} year^{-1} (Implicit) and 8.1 gC m^{-2} yr^{-1} (NoFlow) in the three scenarios.

Spatial variability of GPP under hydrological scenarios

After performing the temporal analysis, it was noted that the Explicit scenario agreed more closely with the EC measurements than the non-explicit scenarios. Assuming that the Explicit scenario was more ideal than the non-explicit scenarios, we did a pixel-to-pixel comparison of the annual GPP simulated at the 400 random sampling points by the two non-explicit scenarios, relative to the Explicit scenario (i.e. Explicit vs NoFlow and Explicit vs Implicit). This analysis revealed that spatially the simulated GPP varied considerably under the three scenarios. Deviations of the simulated annual GPPs from the 1:1 line (Figure 4a) suggested that, in general, the NoFlow scenario underestimated GPP. Statistically, the slope of the linear regression between the Explicit (x) and the NoFlow (y) annual GPPs estimated at the 400 sampling points (slope = 0.820) was significantly different from 1 ($p < 0.001$, $n = 400$) and the intercept (-27.32) was significantly different from 0 ($p = 0.001$, $n = 400$). Considering all the pixels ($n = 35,425$ pixels) in the modelling domain, 91% of the NoFlow pixels underestimated annual GPP relative to the Explicit scenario. It was found that the magnitude of underestimation was as high as −35% of the Explicit scenario. There were also few cases of overestimation of the annual GPP as much as +10% of the Explicit scenario.

Comparison between the annual GPP estimates between the Implicit versus Explicit scenarios at the 400 sampling points revealed that the Implicit scenario overestimated GPP (positive deviation from the 1:1 line; Figure 4a), relative to the Explicit scenario. Statistically, the slope of the linear regression between the Explicit (x) and the Implicit (y) annual GPP estimates (slope = 1.095) was significantly different from 1 ($p < 0.001$, $n = 400$) and the intercept (54-75) was...
significantly different from 0 ($p < 0.001$, $n = 400$). It was observed that 96% of all the Implicit pixels overestimated annual GPP relative to the Explicit scenario although a small number of pixels showed underestimation. Although the watershed average GPP bias was as high as +16-4% of the Explicit scenario, this bias ranged between +55% and −2.6%. Note that one unit on the x or y axes corresponds to 200 gC m$^{-2}$ year$^{-1}$, which is a substantial amount of C-Flux bias in terms of annual GPP.

Figure 5a shows the spatial differences between the annual GPP simulated using Explicit and NoFlow scenarios. It can be noted that the differences (underestimations) were greater on the hill-slope locations of the watershed where the influence of SSF was quite high (red tones). On flatter locations, however, the GPP differences (overestimations) were minimal (violet to purple tones). At these locations, because of subtle topographic differences, SSF was not prominent and ‘turning-off’ SSF did not make much difference to the soil-water status. Consequently, plant physiological conditions were not drastically different in the two scenarios.

In general, in the Implicit scenario, the annual GPPs were slightly underestimated on hill-slope locations (Figure 5b, red tones). These trends were observed because SSF fluxes were suppressed consequent of ignoring topographic controls on SSF calculation. However, this scenario greatly overestimated annual GPP on flatter locations (blue tones) because it unrealistically maintained the hyperoptimal soil moisture conditions that facilitated increased photosynthesis because of excessive SSF. Locations that were dominated by deciduous species showed a striking overestimation of the annual GPP. For example, in the northwestern parts of the watershed where mixed forests are found on the esker ridges, there was a significant overestimation of annual GPP (as much as −341 gC m$^{-2}$ year$^{-1}$). On hill-slope locations (red tones), however, the annual GPPs were only slightly underestimated (e.g. +26 gC m$^{-2}$ year$^{-1}$ in Figure 5b) because the implicitly simulated SSF fluxes were less...
than ‘ideal’ (i.e. \textit{Explicit}) and this lead to conditions of slight soil saturation resulting in only a smaller reduction in photosynthesis. Thus, implicit conceptualization of lateral hydrological processes had a general tendency to overestimate photosynthesis.

From these results, it can be deduced that positive GPP biases created due to the \textit{Implicit} scenario are more intense on flat areas than on hill-slope locations. For the \textit{NoFlow} scenario, however, negative GPP biases are more intense on the hill-slope locations than flat areas. We speculate that factors such as soil hydraulic properties (e.g. Ksat, field capacity, wilting point), the nature of the vegetation and the mechanisms of biogeochemical cycling (soil C-pool dynamics and consequent N release) interactively govern the hydroecological response within a given topographic location.

Spatial variability of ET under various scenarios

A pixel-to-pixel comparison of the simulated annual ET under the \textit{Explicit} and the \textit{NoFlow} scenarios at the 400 sampling points revealed that the \textit{NoFlow} scenario slightly underestimated the annual ET relative to the \textit{Explicit} scenario (Figure 4b). Statistically, the slope of the linear regression between the \textit{Explicit} (x) and the \textit{NoFlow} (y) annual ET estimates (0.87) was significantly different from 1 ($p < 0.001$, $n = 400$) and the intercept (7.08) was significantly different from 0 ($p = 0.016$, $n = 400$), revealing that although underestimation was slight, it was statistically significant. Considering all the pixels ($n = 35,425$ pixels) in the modelling domain, it was found that 81% of the \textit{NoFlow} pixels underestimated annual ET relative to the \textit{Explicit} scenario. The magnitudes of biases ranged between $+16.4\%$ and -12.8%, on an average, the overestimation was $+3.5\%$ relative to the \textit{Explicit} scenario.

In general, the \textit{Implicit} scenario (Figure 5d) overestimated the annual ET on flatter locations of the watershed (locations having bluish tones). However, at locations with depressions (in the northwestern part) and rivulets (southeastern part), the overestimations were weaker (yellow to orange tones). The soils at these locations were simulated to be ‘drier than usual’ because of the combined effects of excessive SSF fluxes and the absence of influx of water from the surrounding areas (‘a decoupling effect’ analogous to what Devito et al. (2005) observed during dry periods in a similar environment). This decoupling effect resulted in decreased soil moisture that consequently lowered the E_{floor} although the transpiration components slightly increased. This condition resulted only in a very small increase in total annual ET (locations having dark red tones).

From the magnitudes of the differences in the simulated ecophysiological processes under different scenarios and from the magnitudes of the RMSEs shown in Table III, we can deduce that photosynthesis is more sensitive to lateral hydrological representations than ET.

DISCUSSION

Effects of lateral hydrological processes on soil-water balance

On an annual basis, the partitioning of the annual infiltrated soil water (I) in the three scenarios were different. The nature of soil hydrological processes had considerable effects on the corresponding rhizosphere moisture regimes that consequently affected GPP and ET via physiological variations in the canopy. The trends in the nature of soil-water balance affected the dynamics of the simulated WTD. Figure 6a shows the WTD simulated by the three scenarios for the pixel that includes the location where piezometer readings were taken at the EOBS site in 2004. At the EOBS tower footprint region, in the \textit{Explicit} scenario, which simulated the ecophysiological processes most ideally, the main mechanism of soil-water partitioning was via SSF (64\% of I) followed by ET (27\% of I). The remainder of the water (0-5\% of I) was used to slightly increase the soil storage during the 1-year time period. Under the \textit{NoFlow} scenario, where the SSF was ‘turned-off’, the main mechanism of soil-water partitioning was via SOLF
(66% of I), followed by ET (24.5% of I). Under this scenario, SOLF occurred only after the soil profile was saturated up to the soil surface (i.e. WTD = 0) and only the excess water that was ponded on the soil surface was subjected to lateral flow. Because of this, there was a large increase in the soil storage (9.6% of I) on an annual basis. On the other hand, in the Implicit scenario, the SSF was 76.2% of I. This increase in SSF occurred because it was assumed that the amount of water that exceeded the field capacity in the saturated zone was lost via SSF consequently reducing the soil storage (8.6% of I) over the year.

Under the NoFlow scenario, increased wetting of the soil profile caused a large fraction of the soil profile to remain in the saturated condition (where the VSMC = \(\theta_s \)) for most parts of the year. However, in the Implicit scenario, a large fraction of the soil profile remained in the unsaturated condition where the VSMC remained between the field capacity and the permanent wilting point for most parts of the year. Apart from SSF, ET also played a critical role in modulating the soil-water balance. In all the three scenarios, ET was calculated as the sum of several subcomponents. In general, the transpiration subcomponents declined under the NoFlow scenario, while the \(E_{\text{floor}} \) increased where the soil profile mostly remained in the saturated condition (Figure 3). For those locations that usually receive water from uphill locations, ET reduced because of a consequent reduction in \(E_{\text{floor}} \) owing to soil drying. However for the Implicit scenario, in general, the transpiration subcomponents increased although \(E_{\text{floor}} \) declined because the soil became drier.

Although we conducted the analysis only for a single year (2004), we believe that similar ecohydrological interactions are plausible even if interannual variability in \(P \) is taken into account. In this excessively humid ecosystem, where the annual ET is much lower than annual \(P \) (see the online Supporting Information), interannual variabilities in \(P \) are still able to result in considerable amount of soil water that is fluxed as SSF. Therefore, we believe that similar effects are plausible, although with different magnitudes. However, in water-limited ecosystems, the influence of interannual variability may be critical in deciding the direction and magnitudes of these ecohydrological interactions.

Effects of lateral hydrological processes on plant physiological status

While total runoff (SOLF + SSF) was comparable in all the three scenarios, the nature of their soil-water partitioning was different. The differences in the simulated
GPP and ET under the three scenarios can be attributed mainly due to differences in the plant physiological statuses consequent of the soil-water conditions.

The ambient \(g_s \) is an important ecophysiological factor which is governed by several environmental variables. Soil-water status is one of the most influential and dynamic factor that controls \(g_s \) (Chen et al., 2005; Sonnentag et al., 2008). Hydrological controls on photosynthesis are manifested through deficits or excesses of soil water (Kozlowski, 2000; Zgallai et al., 2006; Galmes et al., 2007). Although there are many explanations regarding the physiological mechanism regarding the control of soil water on primary production, the most accepted is that of Schulze et al. (1994) who hypothesized that a phytihormone (abscisic acid) produced by stressed root tips when transported through xylem makes the leaves to close stomata and reduce transpiration losses. Nevertheless, \(g_{s,max} \) can vary widely among and within species (Kelliker et al., 1995; Dang et al., 1997, 1998) and hence the magnitudes of \(g_s \) increases with \(g_{s,max} \) (Landsberg and Waring, 1997; Arain et al., 2002). For example, \(g_s \) of a healthy black spruce leaf may be similar to the \(g_s \) of a deciduous species under stress. In the Jarvis (1976) algorithm, the soil-water scalar \(f(\theta) \) that governs ambient \(g_s \) is a function of VSMC. It is important to note that in BEPS-TerrainLab V2.0, although the value of this scalar linearly increases between the permanent wilting point and the field capacity, when VSMC increases beyond the field capacity, its value decreases (Figure 6b). On the other hand, moss conductance (\(g_{moss} \)) and soil-surface conductance (\(g_{soil} \)) increases with an increase in VSMC. This is the reason for increased \(E_{floor} \) under the NoFlow scenario (where the soil is generally wet) and vice versa in the Implicit scenario.

In general, the \(g_s \) simulated by the NoFlow scenario was lower than that of the Explicit scenario, while the Implicit scenario had higher values (Figure 7a). The differences were large in the spring when the SSF fluxes intensified because of the wetting of soil profile due to snow melt water. In the NoFlow scenario, in general, since the soil remained saturated spatially and temporarily, \(g_s \) remained lower relative to the Explicit scenario, which consequently decreased the transpiration and photosynthesis. The decrease in transpiration components created a positive feedback loop which further maintained the VSMC without much alteration triggering a further reduction of transpiration and photosynthesis. However, the total ET was not greatly affected because soil and moss surface conductances increased which resulted in an increase in \(E_{floor} \). Nevertheless, the sum of transpiration and \(E_{floor} (24.5\% \) of infiltrated water) remained slightly lower than what was in the Explicit scenario.

Because the Implicit scenario simulated SSF with no topographical controls, soil water that had energy status above the field capacity was allowed to ‘drain-off’ which resulted in well-drained conditions even in flatter locations. The soil profile remained unsaturated for most parts of the year and unrealistically created optimal conditions (given the fact that this is a humid ecosystem) and increased \(g_s \). This resulted in an increase in the transpiration components although the \(E_{floor} \) reduced. Nevertheless, the sum of transpiration and \(E_{floor} \) remained higher than that of the Explicit scenario because transpiration was the largest contributor to the total ET. Similar to transpiration, photosynthesis also altered under the influence of \(g_s \).

Soil profile generally remained saturated under the NoFlow scenario. Consequently, WTD mostly remained near the soil surface which created optimal conditions for increased \(E_{floor} \) due to increased \(g_{soil} \) and \(g_{moss} \). This compensated for the reduction in the transpiration components in the total ET. Due to this compensatory mechanism, total ET simulated under the NoFlow scenario was only slightly lower in comparison to the Explicit scenario. Sonnentag et al. (2008) working on a peat land ecosystem also reported that ET was less sensitive than GPP under differences in soil moisture status. Under the Implicit scenario, however, the annual total ET generally increased due to enhanced plant transpiration although \(E_{floor} \) declined.
Effects of lateral hydrological processes on nutrient dynamics

Hydrologically controlled nutrient, (N) dynamics also contributed to the biases in the simulated GPP in addition to g_s. Differences in hydrological regimes can alter the local-scale biogeochemical processes which indirectly regulate photosynthesis through N availability. For example, in BEPS-TerrainLab V2.0, leaf N status affects the rate of rubisco activity and therefore photosynthesis. A detailed analysis of hydrologically controlled biogeochemical processes through the dynamics of various soil C-pools and N-mineralization is beyond the scope of this article and is exclusively addressed in Govind et al. (2009b). It was shown that under the non-explicit scenarios, N-mineralization altered, consequent of variability in soil hydrothermal conditions. Leaf N concentration directly affects photosynthesis by altering the V_{max} (Dang et al., 1997), the maximum carboxylation rate in the TIFM of Chen et al. (1999), used within BEPS-TerrainLab V2.0.

While hydrologically controlled ecophysiological processes are mainly governed by the stomatal dynamics, a synergism between g_s and N status makes the system more nonlinear. Conceptually, the interaction between g_s, N status and photosynthesis operating within BEPS-TerrainLab V2.0 is shown in the Figure 7b. This relationship is plotted based on a set of hypothetical conditions with only g_s and N as variables. Note the close interaction between g_s and plant N status in affecting photosynthesis. This synergism might be the reason for the drastic overestimation of GPP under the Implicit scenario, especially for deciduous and mixed-forest stands, where hyperoptimal VSMC favours N-mineralization.

Effects of lateral hydrological processes on rhizosphere wetting patterns that govern ecophysiological processes

Differences in the input and output components of soil-water balance result in variations in the soil-water storages under the three scenarios. Conceptually, in BEPS-TerrainLab V2.0, the soil storage consists of unsaturated and saturated zones, whose depths are determined by WTD. In the unsaturated zone, VSMC = θ and in the saturated zone, because all soil pores are filled with water, $\text{VSMC} = \theta_s = \phi$. Different hydrological scenarios resulted in unique combinations of saturated and unsaturated zones in the soil which affected the rhizosphere wetting patterns. In the model, the rhizosphere wetting pattern is modelled as a function of root geometry and the WTD according to Gale and Grigal (1987). This method calculates the fractions of roots lying in the unsaturated (μ) and saturated zones ($1 - \mu$). Figure 8a shows how the model captures the relative variations in μ and ($1 - \mu$) as a function of WTD for different types of root geometries. Species-specific root geometries are quantified by the root extinction coefficient (ρ), after Jackson et al. (1996). As the water table rises (i.e. WTD decreases), μ decreases, whereas ($1 - \mu$) increases. For shallow-rooted plants such as understory shrubs (e.g. $\rho = 0.88$), μ rapidly reaches 100% for a WTD as shallow as 35 cm, and for deep-rooted plants (e.g. $\rho = 0.945$), μ reaches 100% only when WTD is as deep as 80 cm. Because the understory roots are shallower than the overstory roots, they are more sensitive to alterations in the rhizosphere wetting patterns. This was the reason for larger variability in the understory transpiration components under the three scenarios as shown in Figure 3. In the model, rhizosphere wetting patterns have major implications on the spatial upsampling of leaf-scale eco-physiological processes as described in Equations (3) and (5).

It is assumed that the differences in root wetting patterns proportionately influence the physiological statuses of the leaves in the canopy, analogous to the pipe theory (Shinozaki et al., 1964). Because the rhizosphere wetting patterns differed in the three scenarios, the magnitudes of ecophysiological processes they simulated also varied. For example, in the NoFlow scenario, since the soil profile becomes excessively saturated, μ declined and ($1 - \mu$) increased. On the other hand, under the Implicit scenario, the opposite is true, i.e. μ increases (Figure 8c).

It has to be recollected that in this humid ecosystem, g_s for the leaves corresponding to saturated soil moisture regime (VSMC $= \theta_s = \phi$) is substantially lower than those leaves corresponding to unsaturated soil moisture regime (VSMC $= \theta$). The scenarios showed differences in simulated ecophysiological processes consequent of the rhizosphere wetting patterns mainly due to the changes in the magnitudes of μ and ($1 - \mu$) which are the weighting terms that upscale leaf-level processes to the canopy. This implies that parameterization of root distributions could have implications on the ecohydrological simulations. Figure 8b implies that in general increasing ρ values could lead to decreasing μ biases (and vice versa) which cascades into ecohydrological biases via Equations (3) and (5). It also has to be noted that these biases occur non-linearly depending on the position of the WTD. At shallower WTDs, effects of ρ parameter errors are more significant than at deeper WTDs implying the higher vulnerability of the NoFlow in comparison to the Implicit scenario for errors in ρ parameterization.

SUMMARY AND CONCLUSIONS

There is a growing interest in comprehending the relationships between hydrological and ecological processes. To advance our understanding of terrestrial biogeochemical processes in conjunction with climate change, coupled representations of hydrological and ecophysiological processes within models are necessary. In this context, we carried out a modelling experiment to demonstrate the importance of explicitly incorporating hydrological processes within ecological models. Based on the results of our numerical experiment, we draw the following conclusions:

1. In humid ecosystems, an ecological model that ignores SSF underestimates the simulated ET and GPP in
2. Although both ET and GPP are sensitive to soil hydrological regimes, ET biases are not as prominent as GPP biases. This is because ET subcomponent processes behave differently with compensatory mechanisms as opposed to GPP subcomponents.

Until now, ecological modellers (mostly biologists) and hydrological modellers (mostly civil engineers) worked in isolation. Even though this resulted in parallel advancements in both the fields, these scientific communities have overlooked the capabilities that the combination of hydrology and ecology can bring to a better understanding of earth surface processes. In order to accurately represent hydrological controls on biogeochemical processes within ecological models, the currently existing...
simplified hydrological conceptualizations need to be changed. Although the study was conducted in a humid boreal ecosystem, we hope that these findings will speak to similar issues in other ecosystem environments where water-mediated fluxes of mass and energy are crucial.

ACKNOWLEDGEMENTS
This work was supported by the CCP, funded by the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), Natural Sciences and Engineering Research Council of Canada (NSERC) and BIOCAP Canada. We thank Hank Margolis, P.I. CCP and the site-PI of EOBS site. We thank the anonymous reviewers whose suggestions greatly improved the manuscript.

REFERENCES

Beyer HL. 2004. Hawth’s analysis tools for ArcGIS. Available at http://www.spatial ecology.com/hoots...

Horton RE. 1933. The role of infiltration in the hydrological cycle. Transactions: American Geophysical Union 14: 446–460.

Koster RD, Guo ZC, Dirmeyer PA, Bonan G, Chan E, Cox P, Davies H, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH,

